Abstract:
A color management system is provided for enabling imaging of selected colors called spot colors that document dynamically adjusting the normal printer gamut to achieve extended colors. Developed mass may be increased or decreased by changing set points such as a photoreceptor roll charge, development bias or raster output scanner laser power.
Abstract:
Disclosed is an image color management system and method for controlling an image output device. The method for controlling the image output device comprises generating an image output device profile LUT (look-up-table) characterizing the color profile of the image output device for a plurality of drift states associated with the image output device; generating a set of basis vectors representing the LUT; storing the set of basis vectors in an image output device controller; and generating an image output device active profile associated with a current drift state of the image output device to convert image color data for display or printing by the image output device, wherein the image output device active profile is generated from the set of basis vectors.
Abstract:
A method and system is provided for obtaining an archival model of a selected print job executed in a network imaging system comprised of a plurality of imaging engines. The print job is archived to include job data comprising the imaging information defining the desired job and the production status performance data of the particular engine at about the time of the executing of the job. The job data and the engine performance data are associated and archived for later retrieval for enhanced temporal and distributed consistency in a reprinting of the job.
Abstract:
The exemplary embodiment disclosed herein comprises several aspects of defining and using optimal color test patches for calibrating a printing system for various purposes (e.g., multi-media, gamut extension, drifting correction, etc.). One aspect is the creation and use of color patches where the color patches are selected optimally to result in minimum mean square error when those color patches are used to determine weights of a limited number of basis vectors that model the system (e.g., model the print engine response). A joint optimization technique is given as a method to select the optimal color test patches for calibration.
Abstract:
A new calibration method for a spectrophotometer or a color sensor is provided using multiple color tiles with known reflectances. This procedure uses multiple reference standard tiles, in addition to, the standard white tile and substitutes a wavelength dependent adjustment constant instead of the dark noise reading. The constant is computed using measurements of multiple reference tiles with known reflectance spectra, and its purpose is to weight the sensor readings in order to avoid ill-posed scaling caused by physical limitations such as less than ideal light sources. A scaling factor may be calculated and also used to compute the reflectance of an arbitrary object. A device for carrying out the method is also provided.
Abstract:
What is disclosed is a system and method for automatically removing undesirable periodic or random background noise from heart rate measurement signals obtained from a video camera, ambient illuminator and other unknown electromagnetic sources to improve the overall reliability of biomedical measurements. In one embodiment, a time varying video image acquired over at least one imaging channel of a subject of interest is received. The video images are then segmented into a first region comprising a localized area where plethysmographic signals of the subject can be registered and a second region comprising a localized area of the environment where the plethysmographic signals cannot be registered. Both of the regions are exposed to the same environmental factors. The segmented video signals are pre-processed and the processed signals are subtracted from each other to generate an environmentally compensated signal. The environmentally compensated signal is then communicated to a computer system.
Abstract:
What is disclosed is a system and method for testing a motorized vehicle's exhaust emissions in a non-controlled emissions testing environment. In one embodiment, the present system comprises a toll collection structure having a sensor for obtaining information about a registered owner of a motor vehicle and about the motor vehicle itself, as the vehicle travels on a lane which passes through the structure. At least one emissions detector, which is fixed to the toll collection structure, performs an emissions test on the vehicle by analyzing an exhaust plume emitted by the vehicle. Speed/acceleration of the vehicle is also measured. In various embodiments hereof, the emissions detector comprises a combination of dispersive or non-dispersive infrared detector and a dispersive or non-dispersive ultraviolet detector. Emissions data collected is automatically compared to emissions standards and an authority is notified if that the vehicle does not meet those standards. Various embodiments are disclosed.
Abstract:
What is disclosed is a method which combines structured illumination in the SWIR wavelength range with the detection capabilities of NIR to generate a 3D image of a scene for accurate vehicle occupancy determination. In one embodiment, structured light is projected through a customized optical element comprising a patterned grid. Wavelengths of the received structured pattern are shifted to a CCD detectable range. The shifted light comprises an image in a structured pattern. The wavelength-shifted light is detected using an infrared detector operating in the NIR. For each pixel in the detected patterned image, an amount of distortion caused by 3D surface variation at this pixel location is determined. The distortion is converted to a depth value. The process repeats for all pixels. A 3D image is constructed using each pixel's depth value. The number of occupants in the vehicle is determined from the constructed 3D image.
Abstract:
What is disclosed is a non-contact system and method for determining cardiac function parameters from a vascular pattern identified from RGB and IR video signals captured simultaneously of a region of exposed skin of a subject of interest. In one embodiment, a video of a region of exposed skin is captured using a video camera that captures color values for pixels over visible channels and an IR camera that measures pixel intensity values in wavelength ranges of interest. Pixel intensity values are processed to generate a vascular binary mask that indicates pixel locations corresponding to the vascular pathways. The IR images are registered with corresponding data from the camera's visible channels such that pixels that correspond to the vascular pattern can be isolated in each frame of the video of visible color data. Once processed, pixels associated with the isolated vascular patterns are analyzed to determine desired cardiac function parameters.
Abstract:
What is disclosed is a system and method for image-based determination of concentration of CO and CO2 in a vehicle's exhaust gas in an emissions testing environment. In one embodiment, the present method involves receiving an IR image of the exhaust plume of a motor vehicle intended to be tested for CO and CO2 concentrations. The IR image has been captured using a mid-wave infrared camera with at least one optical filter tuned to the infrared absorption band of CO and CO2. The images are pre-processed to isolate pixels which contain the exhaust plume. The intensity values of pixels in those isolated regions are normalized and concentrations of CO and CO2 are determined via a calibration curve which relates pixel intensities to concentrations. The concentrations are compared to an emissions standard set for the vehicle to determine whether the vehicle is a gross polluter.