摘要:
Methods and apparatus are described for compressing channel state information (CSI) in time-domain based on path location information for CSI feedback. Downlink (DL) CSI is compressed in the time domain and fed back by not sending the multipath location information, or sending at a very low rate. In one method, a wireless transmit/receive unit (WTRU) selects the strongest multipath components based on channel characteristics. The multipath components are quantized in the time domain via direct or vector based quantization. The base station reconstructs a channel impulse response from the fed back quantized multipath components and applies same to precoding processing. In another method, the WTRU feeds back information associated with a narrowband portion(s) of a system spectrum. The selected narrowband portion(s) have sufficient density over time to allow good precoding per subband or across the system spectrum. Short term feedback may be augmented with long term channel information.
摘要:
A wireless communication network and method are described for enhancing cell-edge performance of a wireless transmit/receive unit (WTRU). The WTRU may establish a connection with a plurality of sites via respective downlinks (DLs). Each DL may include at least one DL component carrier (CC) that operates on a frequency that is the same or different than one or more of the other CCs. The sites may manipulate their transmit power for a particular CC operating frequency such that the distance from a particular one of the sites to its cell boundary may become larger by increasing its transmit power on the particular frequency, and the distance from at least one of the other sites to its respective cell boundary may become smaller by decreasing its transmit power on the particular frequency. Thus, a coverage overlap between different CC frequencies may be created while maintaining a frequency reuse pattern of one.
摘要:
A method and apparatus for encoding and decoding high speed shared control channel (HS-SCCH) data are disclosed. For part 1 data encoding, a mask may be generated using a wireless transmit/receive unit (WTRU) identity (ID) and a generator matrix with a maximum minimum Hamming distance. For part 2 data encoding, cyclic redundancy check (CRC) bits are generated based on part 1 data and part 2 data. The number of CRC bits is less than the WTRU ID. The CRC bits and/or the part 2 data are masked with a mask. The mask may be a WTRU ID or a punctured WTRU ID of length equal to the CRC bits. The mask may be generated using the WTRU ID and a generator matrix with a maximum minimum Hamming distance. The masking may be performed after encoding or rate matching.
摘要:
A method for reporting power headroom is disclosed. Power headroom may be reported across all carriers (wideband), for a specific carrier, or for a carrier group. The formula used to calculate the power headroom depends on whether the carrier (or a carrier in the carrier group) has a valid uplink grant. If the carrier or carrier group does not have a valid uplink grant, the power headroom may be calculated based on a reference grant. The power headroom is calculated by a wireless transmit/receive unit and is reported to an eNodeB.
摘要:
A method and apparatus for radio resources control in a multiple input multiple output (MIMO) orthogonal frequency division multiplexing (OFDM) communication system are disclosed. A channel metric is calculated for each of a plurality of transmit antennas. Sub-carriers are allocated to each transmit antenna in accordance with the channel metric of each transmit antenna. Signals are transmitted using the allocated sub-carriers at each antenna. Adaptive modulation and coding and transmit power control of each sub-carrier may be further implemented in accordance with the channel metric. Power control may be implemented per antenna basis or per sub-carrier basis. In performing power control, a subset of transmit antennas may be selected and waterpouring may be applied only to the selected antennas. Waterpouring may be based on SNR instead of channel response.
摘要:
A method and apparatus for radio resources control in a multiple input multiple output (MIMO) orthogonal frequency division multiplexing (OFDM) communication system are disclosed. Channel metric is calculated for each of a plurality of transmit antennas. Sub-carriers are allocated to each transmit antenna in accordance with the channel metric of each transmit antenna. Signals are transmitted using the allocated sub-carriers at each antenna. Adaptive modulation and coding and transmit power control of each sub-carrier may be further implemented in accordance with the channel metric. Power control may be implemented per antenna basis or per sub-carrier basis. In performing power control, a subset of transmit antennas may be selected and waterpouring may be applied only to the selected antennas. Waterpouring may be based on SNR instead of channel response.
摘要:
A wireless transmit receive unit (WTRU) provides facilitation of cell search. In one embodiment, received samples are split into a plurality of sample sets for processing. Each of the sets is processed and an accumulated result is divided by an estimated noise value. In another embodiment, a code correlator correlates the received signal with a primary synchronization code and an auxiliary code correlator having a same length as the code correlator correlates the received signal with a code having a low cross correlation with the primary synchronization code. In another embodiment, a division of an accumulated result with a noise estimate is performed using indexes of the most significant bits.
摘要:
A normalized least means square (NLMS) equalizer including two equalizer filters is disclosed. In one embodiment, a single correction term generator is used to generate correction terms for tap coefficient updates of each of the equalizer filters based on a pilot signal. In another embodiment, two different correction term generators are used to generate correction terms for each of the equalizer filters, whereby one of the correction term generators uses data received from a hard decision unit at the output of one of the equalizer filters to generate correction terms for both of the equalizer filters.
摘要:
A method and apparatus for encoding and decoding high speed shared control channel (HS-SCCH) data are disclosed. For part 1 data encoding, a mask may be generated using a wireless transmit/receive unit (WTRU) identity (ID) and a generator matrix with a maximum minimum Hamming distance. For part 2 data encoding, cyclic redundancy check (CRC) bits are generated based on part 1 data and part 2 data. The number of CRC bits is less than the WTRU ID. The CRC bits and/or the part 2 data are masked with a mask. The mask may be a WTRU ID or a punctured WTRU ID of length equal to the CRC bits. The mask may be generated using the WTRU ID and a generator matrix with a maximum minimum Hamming distance. The masking may be performed after encoding or rate matching.
摘要:
A method and apparatus for indicating a temporary block flow (TBF) to which a piggybacked acknowledgement/non-acknowledgement (PAN) field is addressed. A PAN check sequence (PCS) is created, for example using a cyclic redundancy check (CRC) encoding. The PCS is masked with a temporary flow identity (TFI) assigned to a TBF or a mask generated based on the TFI. A data block including the PAN field and the masked PCS is then processed for transmission. The mask may be generated by converting the TFI using an (M, N) code, M being not greater than the number of bits of the PCS and N being the number of bits of the TFI. With this scheme, a TFI may be transmitted in a PAN field without using explicit bits to identify the TBF.