Abstract:
The object of the invention is to provide an electron beam lithography apparatus and a method thereof which, while maintaining a predetermined pattern drawing accuracy, enables the pattern drawing speed to be improved still further. An electron beam lithography apparatus comprising exposing an electron beam 2 from an electron gun 1, interrupting the electron beam 2 by means of a blanker 6, further deflecting the electron beam 2 by applying a voltage to a deflector 7, wherein the electron beam lithography apparatus is characterized by selecting one of a first predetermined period of time required for the voltage of the deflector 7 to be stabilized and a second period of time which is shorter than the foregoing first period of time, and wherein the blanker 6 is operated according to the result of the foregoing selection.
Abstract:
An electron beam lithograhy apparatus capable of uniformly exposing the surface of a sample by an electron beam including a generator for generating the electron beam, members for shaping the electron beam, members for focusing the shaped electron beam on the surface of the sample, devices for permitting the focused electron beam to scan the surface of the sample, and devices for deflecting the electron beam to blank, unblank and blank in turn, wherein when the electrom beam is deflected in one direction, a sequence of blanking, unblanking and blanking is made of the beam.
Abstract:
Charged particle source (14) delivers beam (20) which is collimated onto first aperture plate having first aperture (28). The beam passing therethrough is deflected by deflection plates (32, 34, 38 and 40) with respect to second aperture (46) in second aperture plate (44). The image (50) of the second aperture (46) is focused on the target plane (16) and the projected image of the footprint (58) of the deflected beam is focused on the target plane (16). When these images overlap, a shaped beam (56) passes through. Scanning of the beam across the target plane by deflection plates (52 and 54) permits exposure of sharp-edged features (62) by positioning the image (60a) inside the margin (64) and then scanning the image (50b) thereacross to expose the sharp edge and thereupon picking up the image (60) so that they both scan across the feature to be exposed.