Abstract:
The object of the invention is to provide an electron beam lithography apparatus and a method thereof which, while maintaining a predetermined pattern drawing accuracy, enables the pattern drawing speed to be improved still further. An electron beam lithography apparatus comprising exposing an electron beam 2 from an electron gun 1, interrupting the electron beam 2 by means of a blanker 6, further deflecting the electron beam 2 by applying a voltage to a deflector 7, wherein the electron beam lithography apparatus is characterized by selecting one of a first predetermined period of time required for the voltage of the deflector 7 to be stabilized and a second period of time which is shorter than the foregoing first period of time, and wherein the blanker 6 is operated according to the result of the foregoing selection.
Abstract:
A pattern forming apparatus using lithography technique includes a stage configured to allow a target object to be placed thereon; a plurality of columns configured to form patterns on the target object by using a charged particle beam while moving relatively to the stage; a pattern forming rule setting unit configured to set a pattern forming rule depending on a position of broken one of the plurality of columns; a region setting unit configured to set regions so that unbroken ones of the plurality of columns respectively form a pattern in one of the regions; a plurality of control circuits each configured to control any one of the plurality of columns different from others of the plurality of columns controlled by others of the plurality of control circuits; and a pattern forming data processing unit configured to perform a converting process on pattern forming data for the regions set to output a corresponding data generated by the converting process to the control circuit of a corresponding one of the unbroken ones of the plurality of columns respectively.
Abstract:
A semiconductor manufacturing apparatus includes: a calculation unit having at least one computer for processing semiconductor design information; a control unit for controlling radiation of an electron in accordance with a processing result of the semiconductor design information; a writing unit for radiating an electron in accordance with instructions of the control unit; and at least one storage device. The semiconductor manufacturing apparatus permits a communication between the storage device, the calculation unit, the control unit, and the writing unit. The semiconductor manufacturing apparatus further includes a communication pass through which the storage device can be controlled.
Abstract:
A semiconductor production system has storage devices for storage of all kinds of information including, but not limited to, the information concerning semiconductor design and information as to semiconductor manufacture along with information relating to semiconductor inspection processes, while representing as a class an instance added with meta data indicative of the role of the information in accordance with a logical expressive form. The system has a network for the storage device use, called the storage area network or “SAN”. The SAN is for interconnection between respective ones of the storage devices, semiconductor manufacturing apparatuses and a semiconductor inspection apparatus. The storage devices are seamlessly accessible from any one of the semiconductor manufacture apparatuses and the semiconductor inspection apparatus and also from a semiconductor design environment associated therewith.
Abstract:
A semiconductor production system has storage devices for storage of all kinds of information including, but not limited to, the information concerning semiconductor design and information as to semiconductor manufacture along with information relating to semiconductor inspection processes, while representing as a class an instance added with meta data indicative of the role of the information in accordance with a logical expressive form. The system has a network for the storage device use, called the storage area network or “SAN”. The SAN is for interconnection between respective ones of the storage devices, semiconductor manufacturing apparatuses and a semiconductor inspection apparatus. The storage devices are seamlessly accessible from any one of the semiconductor manufacture apparatuses and the semiconductor inspection apparatus and also from a semiconductor design environment associated therewith.
Abstract:
A semiconductor manufacturing apparatus includes: a calculation unit having at least one computer for processing semiconductor design information; a control unit for controlling radiation of an electron in accordance with a processing result of the semiconductor design information; a writing unit for radiating an electron in accordance with instructions of the control unit; and at least one storage device. The semiconductor manufacturing apparatus permits a communication between the storage device, the calculation unit, the control unit, and the writing unit. The semiconductor manufacturing apparatus further includes a communication pass through which the storage device can be controlled.
Abstract:
A semiconductor production system has a semiconductor manufacturing apparatus having an exposure unit, a control unit for controlling the exposure unit and a storage device; a semiconductor inspection apparatus having an observation unit, a control unit for controlling the observation unit and a storage device; and a storage device commonly used by the semiconductor manufacturing apparatus and the semiconductor inspection apparatus. The manufacturing apparatus, the inspection apparatus and the commonly used storage device are interconnected via a storage area network. With the semiconductor manufacturing apparatus and the storage device linked together via the storage area network, a large volume of image data or design data can be communicated at high speed, thus improving the system throughput.
Abstract:
A semiconductor production system has storage devices for storage of all kinds of information including, but not limited to, the information concerning semiconductor design and information as to semiconductor manufacture along with information relating to semiconductor inspection processes, while representing as a class an instance added with meta data indicative of the role of the information in accordance with a logical expressive form. The system has a network for the storage device use, called the storage area network or “SAN”. The SAN is for interconnection between respective ones of the storage devices, semiconductor manufacturing apparatuses and a semiconductor inspection apparatus. The storage devices are seamlessly accessible from any one of the semiconductor manufacture apparatuses and the semiconductor inspection apparatus and also from a semiconductor design environment associated therewith.
Abstract:
A semiconductor production system has storage devices for storage of all kinds of information including, but not limited to, the information concerning semiconductor design and information as to semiconductor manufacture along with information relating to semiconductor inspection processes, while representing as a class an instance added with meta data indicative of the role of the information in accordance with a logical expressive form. The system has a network for the storage device use, called the storage area network or “SAN”. The SAN is for interconnection between respective ones of the storage devices, semiconductor manufacturing apparatuses and a semiconductor inspection apparatus. The storage devices are seamlessly accessible from any one of the semiconductor manufacture apparatuses and the semiconductor inspection apparatus and also from a semiconductor design environment associated therewith.
Abstract:
In the case of drawing an oblique figure pattern, when drawing an oblique figure by using a slender rectangular beam, a problem occurs that edge roughness occurs at an oblique-side portion to deteriorate the drawing accuracy. The present invention solves the above problem and provides an electron-beam drawing apparatus and an electron-beam drawing method capable of accurately drawing even an oblique figure. A first rectangular aperture and a second parallelogrammatic aperture are used and a variable parallelogrammatic electron beam formed by two apertures is used to draw a desired pattern on the surface of a sample. Moreover, oblique-side-portion-contour decomposition means is used to draw an oblique-side portion by a variable parallelogram and the inside of an oblique side by a triangle and a quadrangle (rectangle).