Abstract:
A transmission band of an analog signal including successive symbols to be transmitted is notched, where each symbol includes sub-carriers to be modulated. In particular, in each symbol the sub-carriers corresponding to a part of the transmission band to be notched are suppressed. In addition, in each symbol a chosen part of the remaining sub-carriers to be modulated is also suppressed.
Abstract:
An interface is described which has at least one chip side port with a first plurality of pins for conveying fields of a packet and first and second circuit side ports each port having a set of pins with a lower number than the first set of pins in the chip side port. The interface is constructed so that interrupt signals from an off-chip circuit can be conveyed on-chip in a manner such that the interrupt signals are indistinguishable from interrupt signals received from on-chip modules connected to an on-chip communication path. The same principle is applicable to power-down signals.
Abstract:
The method is for detecting the eventual presence of an interferer that is adapted to interfere with a wireless device. The wireless device is provided with at least one receiving chain including an analog to digital conversion stage. The method includes receiving on the receiving chain an incident signal, and delivering to the ADC stage an analog signal from the incident signal. The method further includes elaborating or determining a binary information from a binary signal delivered by the ADC stage and representative of the level of the analog signal, analyzing a temporal evolution of the binary information and detecting the presence of the interferer from the analysis.
Abstract:
A method processes defects in a radio frequency transmission subsystem due to elements therein. The defects may include mismatch between two channels in phase quadrature in the transmission subsystem and a transposition signal leaking from a first frequency transposition stage of the transmission subsystem. The method may include calibration processing including estimating compensation parameters representative of the defects. The estimating may include delivering, into the transmission subsystem upstream of the elements creating the defects, a reference signal having a reference frequency, obtaining, downstream of the first transposition stage, of a resultant reference signal, and obtaining, from the resultant reference signal, of an approximate value for each compensation parameter. The method also may include compensating for the defects by injecting the approximate values into the transmission subsystem.
Abstract:
A resonant power converter for ultra-efficient radio frequency transmission and associated methods. In one exemplary embodiment, the invention is digitally actuated and uses a combination of a noise-shaped encoder, a charging switch, and a high-Q resonator coupled to an output load, typically an antenna or transmission line. Energy is built up in the electric and magnetic fields of the resonator, which, in turn, delivers power to the load with very little wasted energy in the process. No active power amplifier is required. The apparatus can be used in literally any RF signal application (wireless or otherwise), including for example cellular handsets, local- or wide-area network transmitters, or even radio base-stations.
Abstract:
The method is for decoding an LDPC encoded codeword, the LDPC code being represented by a bipartite graph between check nodes and variable nodes including first variable nodes and second variable nodes connected to the check nodes by a zigzag connectivity. The method includes updating messages exchanged iteratively between variable nodes and check nodes including a first variable processing phase during which all the messages from the first variable nodes to the check nodes are updated and a check nodes processing phase during which all the messages from the check nodes to the first variable nodes are updated. The check nodes processing phase further includes updating all the messages from the second variable nodes to the check nodes, and directly passing an updated message processed by a check node to the next check node through the zigzag connectivity.
Abstract:
The transmission band of an analog signal to be transmitted is notched, including sub-carriers to be modulated from digital modulation coefficients respectively associated with the sub-carriers. The method includes providing an initial digital signal from successive frequency-domain groups each containing the digital modulation coefficients respectively associated to the sub-carriers. The initial signal is filtered with a frequency resolution greater than the frequency resolution of the frequency-domain groups to remove frequencies corresponding to the sub-carriers to be removed. The filtered signal is windowed using a windowing mask having a representation in the frequency-domain including a main lobe and secondary lobes. The power spectrum of the lobes decrease faster than the inverse of the frequency squared.
Abstract:
A Bluetooth master unit polls a slave unit to enable the slave to resynchronize to the master, by sending POLL packets with sufficient frequency to maintain a connection to the slave, and in the intervals between such packets, sending NULL packets with sufficient frequency to maintain synchronization of the slave. By replacing some POLL packets with NULL packets, since the slave does not have to respond to a NULL packet, it can save some power, and there is reduced interference on other piconets. The frequency of the remaining POLL packets is set according to a Link Supervision Timeout (to avoid having this timer expire and thus keep the Bluetooth Link to the slave alive) and according to the time since the master received the last packet from the slave.
Abstract:
A method processes defects in a radio frequency transmission subsystem due to elements therein. The defects may include mismatch between two channels in phase quadrature in the transmission subsystem and a transposition signal leaking from a first frequency transposition stage of the transmission subsystem. The method may include calibration processing including estimating compensation parameters representative of the defects. The estimating may include delivering, into the transmission subsystem upstream of the elements creating the defects, a reference signal having a reference frequency, obtaining, downstream of the first transposition stage, of a resultant reference signal, and obtaining, from the resultant reference signal, of an approximate value for each compensation parameter. The method also may include compensating for the defects by injecting the approximate values into the transmission subsystem.
Abstract:
A method may compensate for direct current (DC) offset in a radio frequency reception device. The method may include partitioning an analog portion of the reception device into a plurality of zones, for each zone, calibrating initial DC offset compensation to be applied within an operating range of a respective zone, the operating range of the other zones being limited to a threshold operating range, and determining DC offset compensation to be applied to the reception device throughout the operating range based on the basic DC offset compensations.