Abstract:
There is provided a method and a system for identifying or verifying the fiber arrangement and/or the cable type of multi-fiber array cables (such as MPO cables) which employs an OTDR acquisition device at the near end of the MPO cable, a loopback device at the far end and an array of signatures detectable by the OTDR, either at the far or the near end. The loopback device allows performing bidirectional OTDR measurements with a single OTDR acquisition device (without moving it from one end to the other) and the signature array provides fiber arrangement/cable type identification or verification.
Abstract:
There is provided a method, system and image capture device for determining a polarity of a multi-fiber cable link comprising a plurality of optical fiber links each connected between a first multi-fiber connector and a second multi-fiber connector, according to said polarity. Test light is injected into one or more of the optical fiber links via corresponding injection ports of the first multi-fiber connector, in accordance with a defined injection pattern; at least one polarity-testing image of the second multi-fiber connector is generated in which test light exiting at least one of the optical fiber links through one or more exit ports of the second multi-fiber connector is imaged as one or more spotlight spots in the polarity-testing image; and the polarity of the multi-fiber cable link is determined based on a pattern of said one or more spotlight spots in said polarity-testing image.
Abstract:
A passive optical network (PON) device and method for optical power measurement along an optical transmission path supporting bidirectional propagation of downstream light and upstream light between two network elements of a PON is provided. The device includes an optical power splitter assembly extracting respective portions of the upstream and downstream light, and an upstream wavelength analyzer determining, from the extracted upstream light, an upstream spectral characteristic of the upstream light. The device also includes a processing unit determining, based on the upstream spectral characteristic, a downstream spectral characteristic of a downstream signal of interest among a plurality of downstream signals of the downstream light, and a downstream filter assembly filtering the extracted downstream light to select a portion of the downstream signal of interest. The device further includes a downstream optical power meter assembly measuring an optical power parameter of the selected portion of the downstream signal of interest.
Abstract:
A polarization-related characteristic of an optical path is determined from a predetermined function of the mean-square of a plurality of differences between polarization-analyzed optical power parameters corresponding to pairs of wavelengths mutually spaced about a midpoint wavelength by a small optical frequency difference. At least some of the said differences correspond to wavelength pairs measured under conditions where at least one of midpoint wavelength, input state of polarization (I-SOP) or analyzed state of polarization (A-SOP) of a pair is different.
Abstract:
The reflectometric method for measuring an optical loss value of an optical fiber link generally comprises: obtaining at least one bias value being indicative of a bias induced by differing backscattering characteristics of a first optical fiber length and a second optical fiber length; propagating at least one test signal serially into the first optical fiber length, the optical fiber link and the second optical fiber length; monitoring at least one return signal resulting respectively from the propagation of the at least one test signal; and determining the optical loss value based on the at least one return signal and the at least one bias value.
Abstract:
A portable apparatus for measuring optical powers of optical signals propagating concurrently in opposite directions in an optical transmission path between two elements, at least one of the elements being operative to transmit a first optical signal (S1) only if it continues to receive a second optical signal (S2) from the other of said elements, comprises first and second connector means for connecting the apparatus into the optical transmission path in series therewith, and propagating and measuring means connected between the first and second connector means for propagating at least the second optical signal (S2) towards the one of the elements, and measuring the optical powers of the concurrently propagating optical signals (S1, S2). The measurement results may be displayed by a suitable display unit. Where one element transmits signals at two different wavelengths, the apparatus may separate parts of the corresponding optical signal portion according to wavelength and process them separately.
Abstract:
There is provided an adapter tip to be employed with an optical-fiber inspection microscope probe and an optical-fiber inspection microscope system suitable for imaging the optical-fiber endface of an angled-polished optical-fiber connector deeply recessed within a connector adapter. The adapter tip or microscope system comprises a relay lens system having at least a first relay lens which is disposed so as to directly receive light reflected from the optical-fiber endface during inspection, the lens axis of the first relay lens being offset relative to the optical-fiber endface so as to deviate light reflected from the optical-fiber endface towards the optical-fiber axis of the connector.