Abstract:
Method and systems for characterizing an optical signal propagating along a communication link are disclosed. The signal includes a data-carrying signal contribution, modulated at a symbol frequency, and a noise contribution. The method includes measuring an optical power spectrum of the signal, which includes a data-carrying signal spectrum component and a noise spectrum component. The method also includes determining a measured spectral correlation function within pairs of spectral components of the signal as a function of center frequency of the pairs, the spectral components in each pair being spectrally separated from each other by the symbol frequency. The method further includes obtaining a solution for the data-carrying signal spectrum component based on the measured optical power spectrum, such that a calculated spectral correlation function based on the solution matches the measured spectral correlation function. In some embodiments, the spectral correlation function is measured as a low-frequency beatnote amplitude function.
Abstract:
A multimode launch system to be connected to an Optical Time-Domain Reflectometer (OTDR) for use in performing at least one OTDR measurement on a multi-fiber array Device Under Test (DUT), the multimode launch system comprising: an optical switch being connectable to the OTDR during use; a launch array device having an end being connectable to the optical switch and another end being connectable to the multi-fiber array DUT during use, the launch array device having a plurality of multimode launch optical fibers each having at least one first guidance parameter being smaller than a corresponding one of at least one second guidance parameter of at least one multimode optical fiber of the optical switch; and a multi-fiber mode conditioner along the launch array device for inducing a preferential attenuation of higher-order optical modes of test light propagated into the multi-fiber array DUT during use.
Abstract:
There is provided a method for measuring an optical power attenuation value of a multimode DUT. The method generally has, using an optical source, propagating test light along a multimode device link having a first multimode device, the multimode DUT and a second multimode device serially connected to one another; said propagating including inducing a preferential attenuation of high-order optical fiber modes of the test light along the first multimode device and along the second multimode device; using an optical power detector, detecting an optical signal resulting from the propagation of the test light along the multimode device link and transmitting an output signal based on the detected optical signal; and using a processor, determining the optical power attenuation value of the multimode DUT based on the output signal.
Abstract:
A portable inspection probe for the inspection of a recessed mating surface of an optical fiber connector is provided. In one variant, the portable inspection probe includes a digital holographic detection module operable to digitally record a hologram of the recessed mating surface, and a rigid probe tip configured to be optically coupled to the digital holographic detection module and shaped to provide optical access to the recessed mating surface. In another variant, the portable inspection probe is to be used with a rigid probe tip connectable thereto, and the digital holographic detection module includes a probing optical assembly not traversed by a reference beam and configured to direct an object beam onto the recessed mating surface and to collect the object beam upon reflection thereof by the recessed mating surface. An inspection system and an inspection method are also provided.
Abstract:
There is provided a method for measuring an optical power attenuation value of a multimode DUT. The method generally has, using an optical source, propagating test light along a multimode device link having a first multimode device, the multimode DUT and a second multimode device serially connected to one another; said propagating including inducing a preferential attenuation of high-order optical fiber modes of the test light along the first multimode device and along the second multimode device; using an optical power detector, detecting an optical signal resulting from the propagation of the test light along the multimode device link and transmitting an output signal based on the detected optical signal; and using a processor, determining the optical power attenuation value of the multimode DUT based on the output signal.
Abstract:
There is provided a method for determining a noise parameter characterizing an optical Signal-Under-Test (SUT) having a signal contribution, an Amplified Spontaneous Emission (ASE) noise contribution and a non-ASE optical noise contribution, such as a carrier-leakage contribution or a depolarized-signal contribution, within an optical-signal bandwidth. The method comprises acquiring optical spectrum trace(s) of the SUT, discriminating at least the non-ASE optical noise contribution from the ASE-noise contribution using the optical spectrum trace(s) and/or a trace obtained from the optical spectrum trace(s); and determining the noise parameter using discriminated non-ASE optical noise contribution and/or the discriminated ASE-noise contribution.
Abstract:
A passive optical network (PON) device and method for optical power measurement along an optical transmission path supporting bidirectional propagation of downstream light and upstream light between two network elements of a PON is provided. The device includes an optical power splitter assembly extracting respective portions of the upstream and downstream light, and an upstream wavelength analyzer determining, from the extracted upstream light, an upstream spectral characteristic of the upstream light. The device also includes a processing unit determining, based on the upstream spectral characteristic, a downstream spectral characteristic of a downstream signal of interest among a plurality of downstream signals of the downstream light, and a downstream filter assembly filtering the extracted downstream light to select a portion of the downstream signal of interest. The device further includes a downstream optical power meter assembly measuring an optical power parameter of the selected portion of the downstream signal of interest.
Abstract:
A portable apparatus for measuring optical powers of optical signals propagating concurrently in opposite directions in an optical transmission path between two elements, at least one of the elements being operative to transmit a first optical signal (S1) only if it continues to receive a second optical signal (S2) from the other of said elements, comprises first and second connector means for connecting the apparatus into the optical transmission path in series therewith, and propagating and measuring means connected between the first and second connector means for propagating at least the second optical signal (S2) towards the one of the elements, and measuring the optical powers of the concurrently propagating optical signals (S1, S2). The measurement results may be displayed by a suitable display unit. Where one element transmits signals at two different wavelengths, the apparatus may separate parts of the corresponding optical signal portion according to wavelength and process them separately.
Abstract:
A portable apparatus for measuring parameters of optical signals propagating concurrently in opposite directions in an optical transmission path between two elements, at least one of the elements being operative to transmit a first optical signal (S1) only if it continues to receive a second optical signal (S2) from the other of said elements, comprises first and second connector means for connecting the apparatus into the optical transmission path in series therewith, and propagating and measuring means connected between the first and second connector means for propagating at least the second optical signal (S2) towards the one of the elements, and measuring the parameters of the concurrently propagating optical signals (S1, S2). The measurement results may be displayed by a suitable display unit. Where one element transmits signals at two different wavelengths, the apparatus may separate parts of the corresponding optical signal portion according to wavelength and process them separately.
Abstract:
A device and method for optical power measurement in an optical network supporting upstream and downstream signal propagation along an optical transmission path. An upstream wavelength analyzer receives upstream light extracted from the optical transmission path and is configured to determine an upstream spectral characteristic of the extracted upstream light. A downstream optical power meter assembly receives downstream light extracted from the optical transmission path and is configured to measure an optical power parameter of a downstream signal. A processing unit is configured to determine, based on the upstream spectral characteristic, at least one pass/fail threshold associated with the measured optical power parameter of the downstream signal.