Abstract:
We disclose systems and methods of dynamically virtualizing a wireless communication network. The communication network is comprised of heterogeneous multi-RAT mesh nodes coupled to a computing cloud component. The computing cloud component virtualizes the true extent of the resources it manages and presents an interface to the core network that appears to be a single base station.
Abstract:
A method for providing increased backhaul capacity in an ad-hoc mesh network is disclosed. The method involves attaching a mobile base station in an ad-hoc mesh network to a macro cell; measuring at least one of a backhaul signal quality with the macro cell and a throughput to the macro cell; reporting information, including a signal quality parameter, a physical position of the mobile base station, a cell identifier of the macro cell, and the measured throughput, to a coordinating node; determining if the connection between the mobile base station and the macro cell is currently in use by the ad-hoc mesh network, and whether the link exceeds a minimum quality threshold; and sending, to the mobile base station, an instruction to advertise a connection from the mobile base station to the macro cell to other nodes in the ad-hoc mesh network.
Abstract:
In this invention, we disclose methods directed toward integrating an ad hoc cellular network into a fixed cellular network. The methods disclosed herein automate the creation and integration of these networks. In additional embodiments, we disclose methods for establishing a stand-alone, ad hoc cellular network. In either of these implementations, we integrate or establish an ad hoc cellular network using mobile ad hoc cellular base stations configured to transmit and receive over a variety of frequencies, protocols, and duplexing schemes. The methods flexibly and dynamically choose an access or backhaul configuration and radio characteristics to optimize network performance. Additional embodiments provide for enhancing an existing network's coverage as needed, establishing a local network in the event of a loss of backhaul coverage to the core network, and providing local wireless access service within the ad hoc cellular network.
Abstract:
In this invention, we disclose methods directed toward integrating an ad hoc cellular network into a fixed cellular network. The methods disclosed herein automate the creation and integration of these networks. In additional embodiments, we disclose methods for establishing a stand-alone, ad hoc cellular network. In either of these implementations, we integrate or establish an ad hoc cellular network using mobile ad hoc cellular base stations configured to transmit and receive over a variety of frequencies, protocols, and duplexing schemes. The methods flexibly and dynamically choose an access or backhaul configuration and radio characteristics to optimize network performance. Additional embodiments provide for enhancing an existing network's coverage as needed, establishing a local network in the event of a loss of backhaul coverage to the core network, and providing local wireless access service within the ad hoc cellular network.
Abstract:
This invention discloses a heterogeneous mesh network comprised of multiple radio access technology nodes, wherein nodes can function dynamically, switching roles between client and server. Moreover, these nodes can operate in a heterogeneous fashion with respect to one another. In an alternate embodiment, the invention describes a mesh network comprised of nodes operating over TV white-space. This invention additionally discloses self-organizing network embodiments and embodiments that include novel methods of monitoring operational parameters within a mesh network, adjusting those operational parameters, and creating and implementing routing tables.
Abstract:
A method for providing uplink link adaptation in 5G base stations is presented. In one embodiment the method includes computing a RSSI of each allocation measuredRSSI(i), including blocks which are unused; computing measurements upon receiving channel allocation and TPC commands from a MAC, the measurements including a revisedWidebandRSSI including a revisedRSSI(i), a lowest relative threshold of each allocation, and a revised RSSI of each allocation after applying TPC commands normalized by the revisedWidebandRSSI; when the revisedWidebandRSSI is greater than a widebandRSSIthreshold, then resetting the TPC commands to be sent to the particular UE and sending a saturation_error_indication message to the MAC; wherein when a revisedRSSInorm(i) for at least one allocation is below the widebandRSSIthreshold, sending the quant_loss_error_indication message to the MAC along with the corresponding index of the allocation; and adapting the MCS and power control information for each of the allocations in the next subframe.
Abstract:
Systems, methods and computer software are disclosed for providing multi-User Equipment (UE) and multi-message support in tunnel management messages. In one embodiment, a method is disclosed, comprising: determining, for a first node and a second node using GPRS Tunneling Protocol (GTP) tunneling support for UE management, if the first node and the second node support multi-UE messaging; when the first node and the second node support multi-UE messaging, then switching to multi-UE multi-messaging mode wherein a chain of messages are formed; and when at least one of the first node and second node do not support multi-UE messaging, then using conventional tunnel management messaging.
Abstract:
Systems, methods and computer software are disclosed for providing a 5G native architecture. In one embodiment a method includes providing an all G software platform, including a core virtualization stack capable of communication with all hauls, and a radio virtualization stack capable of communication with all cores; and wherein the core virtualization stack communicates with an analytics layer, the analytics layer communicates with an orchestration layer, the orchestration layer communicates with a consolidation layer, and the consolidation layer communicates with the radio virtualization stack such that any G core is able to communicate with any G radio access network.
Abstract:
Systems, methods and computer software are disclosed for 4G and 5G core interworking. In one embodiment a HetNet gateway (HNG) is disclosed. The HNG includes a virtual 4G core; a virtual 5G core; an interface to a core network; an interface to a 4G Radio Access Network (RAN); and an interface to a 5G RAN. The HNG provides interworking 4G to 5G such that a 5G RAN works with a 4G core.
Abstract:
A wireless network system is described. In some scenarios MME/MSC/SGSN may act as a client which has huge amount of real-time data to be delivered towards server. For this speedy and reliable delivery requirement, a approach has been proposed which will use multiple parallel HTTP connections for delivery and also make sure that the events related to a particular node is delivered in right order. The multiple HTTP connections are used for parallel delivery so that in case one connections fails then it may not impact other existing connections. The number of connections may grow dynamically up to the configured limit depending on the data delivery requirements and then it may dynamically shrink once the load is reduced. A key based approach is proposed where each connected node will be assigned a unique key which will be used for sequencing the messages related to events of this particular node. In this way we can achieve in-order delivery of data which is dependent on each other along with parallel delivery of data which is independent of each other.