Abstract:
Novel tools and techniques are provided for implementing network experience shifting, and, in particular embodiments, using either a roaming or portable hypervisor associated with a user or a local hypervisor unassociated with the user. In some embodiments, a network node in a first network might receive, via a first network access device in a second network, a request from a user device to establish roaming network access, and might authenticate a user associated with the user device, the user being unassociated with the first network access device. Based in part on a determination that the user is authorized to access data, content, profiles, and/or software applications that are accessible via a second network access device, the network node might establish a secure private connection through a hypervisor communicatively coupled to the first network access device to provide the user with access to her data, content, profiles, and/or software applications.
Abstract:
Disclosed embodiments comprise one or more security methods, systems or apparatus suitable to provide additional security to personal property or financial transactions. Embodiments feature a proximity security token which is physically separate from a protected device. A communications link is provided between the proximity security token and the protected device which communications link operates over a limited range. Thus, the presence and active operation of the limited range communications link between the proximity security token and protected device indicates that the protected device has not been lost and stolen. Interruption of the communications link indicates that the protected device may have been lost or stolen causing the commencement of security actions.
Abstract:
Novel tools and techniques providing for the robust wireless distribution of communications signals from a provider to multiple customer premises. Certain embodiments comprise one or more modular communications apparatuses which are located near to customer premises. The modular communications apparatuses features an enclosure which is, at least in part, transparent to radio frequencies. A modular communications apparatus also typically includes one or more communications radios or transmitter/receiver devices within the enclosure. The apparatus also includes at least one and possibly more than one antenna located within the enclosure along with wire or cable-based signal output apparatus.
Abstract:
Disclosed embodiments comprise one or more security methods, systems or apparatus suitable to provide additional security to personal property or financial transactions. Embodiments feature a proximity security token which is physically separate from a protected device. A communications link is provided between the proximity security token and the protected device which communications link operates over a limited range. Thus, the presence and active operation of the limited range communications link between the proximity security token and protected device indicates that the protected device has not been lost and stolen. Interruption of the communications link indicates that the protected device may have been lost or stolen causing the commencement of security actions.
Abstract:
Novel tools and techniques might provide for implementing interconnection gateway and/or hub functionalities. In some embodiments, a network functions virtualization (“NFV”) interconnection gateway or hub (“NFVIG” or “NFVIH”) might receive a set of network interconnection information from each of one or more sets of NFV entities and/or one or more sets of NFV-based customer devices, each set being located within a network separate from the networks in which the other sets are located. The NFVIG or NFVIH might be located within one of these networks or within a separate external network. The NFVIG or NFVIH might abstract each set of network interconnection information, and might establish one or more links among the sets of NFV entities and/or the sets of NFV-based customer devices based on such abstraction. The NFVIG or NFVIH might provide access to one or more virtualized network functions (“VNFs”) via the one or more links.
Abstract:
Novel tools and techniques providing for the robust wireless distribution of communications signals from a provider to multiple customer premises. Certain embodiments comprise one or more modular communications apparatuses which are located near to customer premises. The modular communications apparatuses features an enclosure which is, at least in part, transparent to radio frequencies. A modular communications apparatus also typically includes one or more communications radios or transmitter/receiver devices within the enclosure. The apparatus also includes at least one and possibly more than one antenna located within the enclosure along with wire or cable-based signal output apparatus.
Abstract:
Novel tools and techniques might provide for implementing application, service, and/or content access control. Based at least in part on a consumer's choice of applications, services, content, and/or content providers—particular in exchange for a subsidy on content and/or network access fees provided to the consumer by chosen content providers—, a computing system may determine whether access to applications, services, and/or content not associated with the chosen content providers (“other content”) should be allowed or restricted. If restricted, the computing system might utilize various network access techniques and/or technologies to block the consumer's access to the other content, to allow access to the other content on a charge per access basis, or to allow access to the other content at reduced network access speeds. In some embodiments, an access provider (e.g., an Internet service provider, etc.) might perform both determination and implementation of content access and restriction.
Abstract:
Novel solutions to provide enhanced configurability of network access. Such solutions can provide, inter alia, enhanced utilization of network resources (including without limitation network aggregation devices, such as DSLAMs and the like). In an aspect of some solutions, a network aggregation device can divide an aggregate uplink bandwidth into a plurality of time slots. Some or all of the time slots can be reserved for different customers (subscribers). In another aspect of some embodiments, the time slots can be allocated in such a way as to simulate oversubscription of the aggregate uplink bandwidth