Abstract:
A liquid crystal display (LCD) panel and a manufacturing method thereof are provided. The manufacturing method includes providing a panel including a first substrate having scan lines, data lines, an active device electrically connecting the scan and data lines, and a pixel electrode electrically connecting the active device, a second substrate having an opposite electrode, and a liquid crystal (LC) layer disposed between the first and the second substrates and having a monomer material. A first curing voltage and a second curing voltage are applied to the scan and data lines, respectively. The second curing voltage is thus transmitted to the pixel electrode. The first curing voltage is higher than an absolute value of the second curing voltage. The monomer material is polymerized to form a first polymer stabilized alignment (PSA) layer between the LC layer and the first substrate and a second PSA layer between the LC layer and the second substrate. The electrical field is then removed.
Abstract:
A transflective LCD device includes an array substrate and a color filter. The substrate includes a plurality gate lines, a plurality of common lines, and a plurality of data lines substantially crossing the gate lines to define a plurality of sub-pixel regions. Each sub-pixel region has a reflective area and a transmissive area. Two of the reflective area of two adjacent sub-pixel regions in the same column are juxtaposed to each other. The color filter has a plurality of sub-pixel regions respectively aligned with the sub-pixel regions of the array substrate. The color filter includes an insulating layer disposed on the reflective area of a respective sub-pixel region. An LC layer is disposed between the array substrate and the color filter.
Abstract:
A pixel structure including a scan line, a first data line, a second data line, a first active device, a second active device, a first pixel electrode, a second pixel electrode, and a common electrode is provided. The first data line and the second data line are respectively intersected with the scan line. The first pixel electrode is electrically connected to the first data line through the first active device. The second pixel electrode is electrically connected to the second data line through the second active device. The common electrode is located under the first pixel electrode and the second pixel electrode. Both a first voltage of the first pixel electrode and a second voltage of the second pixel electrode are different from a third voltage of the common electrode.
Abstract:
A pixel structure includes a scan line, a first data line, a second data line, a first active device, a second active device, a first pixel electrode, a second pixel electrode, a common line, and a first capacitance upper electrode. The first and the second data lines intersect the scan line. The common line is parallel to the scan line. The first pixel electrode is electrically connected to the first data line through the first active device. The second pixel electrode is electrically connected to the second data line through the second active device. A difference between a first voltage of the first pixel electrode and a second voltage of the second pixel electrode constitutes a driving electric field to drive a display medium. The first capacitance upper electrode is electrically connected to the first pixel electrode and located above the common line to form a first storage capacitor.
Abstract:
A liquid crystal display panel including a first substrate, a second substrate, scan lines, data lines, pixel unit sets, and a liquid crystal layer is provided. The scan lines, data lines, and pixel unit sets are disposed on the first substrate. A first gap is formed between two adjacent pixel unit sets. Each of the pixel unit sets includes pixel units, and a second main space is formed between two adjacent pixel units. Each of the pixel units includes an active device electrically connected to a scan line and a data line, and a transparent pixel electrode has slits and electrically connected to the active device. The width of the first gap is greater than that of the second gap.
Abstract:
A transflective LCD device includes an array substrate and a color filter. The substrate includes a plurality gate lines, a plurality of common lines, and a plurality of data lines substantially crossing the gate lines to define a plurality of sub-pixel regions. Each sub-pixel region has a reflective area and a transmissive area. Two of the reflective area of two adjacent sub-pixel regions in the same column are juxtaposed to each other. The color filter has a plurality of sub-pixel regions respectively aligned with the sub-pixel regions of the array substrate. The color filter includes an insulating layer disposed on the reflective area of a respective sub-pixel region. An LC layer is disposed between the array substrate and the color filter.
Abstract:
In a transflective liquid crystal display having a transmission area and the reflection area, the transmissive electrode is connected to a switching element to control the liquid crystal layer in the transmission area, and the reflective electrode is connected to the switching element via a separate capacitor to control the liquid crystal layer in the reflection area. The separate capacitor is used to shift the reflectance in the reflection area toward a higher voltage end in order to avoid the reflectance inversion problem. In addition, an adjustment capacitor is connected between the reflective electrode and a different common line. The adjustment capacitor is used to reduce or eliminate the discrepancy between the gamma curve associated with the transmittance and the gamma curve associated with the reflectance.
Abstract:
An LCD panel including a first substrate, a second substrate disposed above the first substrate, a plurality of signal lines disposed on the first substrate, and a plurality of sub-pixel sets arranged between the first substrate and the second substrate. Each sub-pixel set includes a plurality of sub-pixels electrically connected to the signal lines, each sub-pixel set has a spacer disposed between the first substrate and the second substrate, and each spacer form a region in each corresponding sub-pixel set, wherein the area of the sub-pixel with the region is substantially greater than the area of other sub-pixels, and the effective display area of the sub-pixel with the region is substantially equal to the effective display area of other sub-pixels.
Abstract:
In a transflective liquid crystal display having a transmission area and the reflection area, the transmissive electrode is connected to a switching element to control the liquid crystal layer in the transmission area, and the reflective electrode is connected to the switching element via a separate capacitor to control the liquid crystal layer in the reflection area. The separate capacitor is used to shift the reflectance in the reflection area toward a higher voltage end in order to avoid the reflectance inversion problem. In addition, an adjustment capacitor is connected between the reflective electrode and a different common line. The adjustment capacitor is used to reduce or eliminate the discrepancy between the gamma curve associated with the transmittance and the gamma curve associated with the reflectance.
Abstract:
A pixel structure of a fringe field switching liquid crystal display (FFS-LCD) and a method for manufacturing the pixel structure are provided. Compared to the conventional method of using seven photolithography-etching processes for manufacturing a pixel structure, the method of the present invention uses only six photolithography-etching processes that save manufacturing costs and time. Furthermore, the pixel structure thereby only comprises two insulating layers, and thus, the light transmittance thereof can be increased in comparison to the conventional pixel structure comprising three insulating layers.