Abstract:
A method for providing a physician with an elective replacement indicator (ERI) for an implantable medical device is described. The medical device is powered by an electrochemical having a lithium anode coupled to a sandwich cathode comprising the configuration: SVO/current collector/CFx, with the SVO facing the anode. The indicator is predicated on when the cell's discharge capacity is nearing end-of-life (EOL) based on the theoretical capacity and the discharge efficiency of the SVO and CFx active materials. This serves as an indicator when it is time to replace the medical device.
Abstract translation:描述了一种用于向医生提供用于可植入医疗装置的选择性替换指示器(ERI)的方法。 医疗设备由具有耦合到夹心式阴极的锂阳极的电化学器件驱动,其包括以下配置:SVO /集电器/ CF x x,其中SVO面向阳极。 该指标基于电池的放电容量是否接近寿命终止(EOL),基于理论容量和SVO和CF x活性材料的放电效率。 当更换医疗设备时,可以作为指标。
Abstract:
The current invention provides a method of preparing a cathode material in a sequential two-part reaction process. In the first step, silver nitrate and vanadium oxide are decomposed by heat under an inert atmosphere. In the second part of the process, the resulting intermediate material is heat treated under an oxidizing atmosphere. The sequential combination of steps produces a highly crystalline silver vanadium oxide cathode material which has properties not heretofore exhibited by SVO prepared by prior art methods.
Abstract:
A battery pack having a first secondary cell and a second secondary cell, preferably of a non-aqueous chemistry, is described. Each secondary cell has a discharge capacity and an internal resistance to a direct charge current. To diminish and alleviate problems associated with extended cycling of battery packs, the internal resistance to the direct charge current and the discharge capacity of each secondary cell is substantially matched. Thereby, the battery packs have longer running voltages and increased energy density.
Abstract:
The invention is directed to an electrochemical cell having at least one of its electrodes produced by coating a slurry mixture of an active material, possibly a conductive additive, and a binder dispersed in a solvent and contacted to a perforated current collector foil. It is particularly important that the active slurry does not move through the perforations of the current collector. For this reason, a barrier is placed against the opposite side of the current collector to block the perforations as the current collector is being coated with the slurry. After volatilizing the solvent, a second, different active material is coated to the opposite side of the current collector, either as a slurry, a pressed powder, a pellet or a free standing sheet. An example of this is a cathode having a configuration of: SVO/current collector CFx. The opposed active materials on the current collector can also be of the same chemistry.
Abstract:
An electrode having the configuration: first active material/current collector/second active material is described. One of the electrode active materials in a cohesive form of active particles being firmly held together as part of the same mass is incapable of moving through the current collector to the other side thereof. However, in an un-cohesive form of active particles not being firmly held together as part of a mass, the one electrode active material is capable of communication through the current collector. The other or second active material is in a form in-capable of communication through the current collector, whether it is in a cohesive or un-cohesive powder form. Then, the assembly of first active material/current collector/second active material is pressed from either the direction of the first electrode active material to the second electrode active material, or visa versa.
Abstract:
A new sandwich cathode design having a first cathode active material of a relatively low energy density but of a relatively high rate capability sandwiched between two current collectors and with a second cathode active material having a relatively high energy density but of a relatively low rate capability in contact with the opposite sides of the two current collectors, is described. The present cathode design is relatively safer under short circuit and abuse conditions than cells having a cathode active material of a relatively high rate density but a relatively low energy capability alone. A preferred cathode is: CFx/current collector/SVO/current collector/CFx. The SVO provides the discharge end of life indication since CFx and SVO cathode cells discharge under different voltage profiles. This is useful as an end-of-replacement indicator (ERI) for an implantable medical device, such as a cardiac pacemaker.
Abstract:
A new sandwich cathode design is provided comprising a cathode active material mixed with a binder and a conductive diluent in at least two differing formulations. The formulations are then individually pressed on opposite sides of a current collector, so that both are in direct contact with the current collector. Preferably, the active formulation on the side of the current collector facing the anode is of a lesser percentage of the active material than that on the opposite side of the current collector. Such an exemplary cathode design might look like: SVO (100-x % active)/current collector/SVO (100-y % active)/current collector/SVO (100-x % active), wherein x is greater than y.
Abstract:
An electrochemical cell of either a primary or a secondary chemistry, is described. In either case, the cell has a negative electrode of lithium or of an anode material which is capable of intercalating and de-intercalating lithium coupled with a positive electrode of a cathode active material. A carbonate compound is mixed with either the anode material or the cathode active material prior to contact with its current collector. The resulting electrode couple is activated by a nonaqueous electrolyte. The electrolyte flows into and throughout the electrodes causing the carbonate additive to dissolve in the electrolyte. The carbonate solute is then able to contact the lithium to provide an electrically insulating and ionically conducting passivation layer thereon.
Abstract:
An electrochemical cell of either a primary or a secondary chemistry, is described. In either case, the cell has a negative electrode of lithium or of an anode material which is capable of intercalating and de-intercalating lithium coupled with a positive electrode of a cathode active material. A nitrate compound is mixed with either the anode material or the cathode active material prior to contact with its current collector. The resulting electrode couple is activated by a nonaqueous electrolyte. The electrolyte flows into and throughout the electrodes causing the nitrate additive to dissolve in the electrolyte. The nitrate solute is then able to contact the lithium to provide an electrically insulating and ionically conducting passivation layer thereon.
Abstract:
An electrochemical cell of either a primary or a secondary chemistry, is described. In either case, the cell has a negative electrode of lithium or of an anode material which is capable of intercalating and de-intercalating lithium coupled with a positive electrode of a cathode active material. A nitrite compound is mixed with either the anode material or the cathode active material prior to contact with its current collector. The resulting electrode couple is activated by a non-aqueous electrolyte. The electrolyte flows into and throughout the electrodes causing the nitrite compound to dissolve in the electrolyte. The nitrite solute is then able to contact the lithium to provide an electrically insulating and ionically conducting passivation layer thereon.