Abstract:
A new sandwich negative electrode design for a secondary cell is provided comprising a “sacrificial” alkali metal along with a carbonaceous anode material. In the case of a hard carbon anode material, the sacrificial alkali metal is preferably lithium and is sized to compensate for the initial irreversible capacity of this anode material. Upon activating the cells, the lithium metal automatically intercalates into the hard carbon anode material. That way, the sacrificial lithium is consumed and compensates for the generally unacceptable irreversible capacity of hard carbon. The superior cycling longevity of hard carbon now provides a secondary cell of extended use beyond that know for conventional secondary cells having only graphitic anode materials.
Abstract:
An electrochemical alkaline cell of the type comprising an anode, cathode and electrolyte for generating electrical energy and exhibiting an output discharge voltage comprises a consumable anode composed of zinc-indium-mercury alloy. The indium constituent is present in an amount of from more than 2% to 10% by weight and the mercury constituent is present in an amount 2% to 14% by weight with respect to the weight amount of the zinc constituent thereby obtaining a cell discharge voltage at one voltage level during substantially the whole useful life of the cell due to consumption of the zinc constituent followed by an abrupt lowering of the cell discharge voltage to a distinctly lower voltage level for the remainder of the cell useful life due to consumption of the indium and mercury constituents. The abrupt change of the cell discharge voltage to the lower level signifies that the cell is near exhaustion and should be replaced.
Abstract:
A battery system that can prevent a battery from bursting and a battery safety alarm system therefore are provided. A battery system includes an optical fiber wound around an outer circumferential portion of a battery. The battery system detects an abnormality of the battery on the basis of a loss of the laser beam caused by lateral pressure acting on the optical fiber. An alarm warns a user of the abnormality when the abnormality is detected.
Abstract:
An alkaline electrochemical cell capable of providing optimum discharge efficiencies at both a high tech drain rate and a low drain rate is disclosed. In one embodiment, the ratio of the anode's electrochemical capacity to the cathode's electrochemical capacity is between 1.33:1 and 1.40:1 and the surface area of the anode to cathode interface is maximized.
Abstract:
A method for judging a service life of a primary battery is disclosed, in which, by using a battery pack having a built-in microcomputer, a primary lithium battery is discharged at a given time, a voltage of the primary lithium battery is measured at the time of discharge, and such measured voltage is compared with a specified reference voltage, so that when the measured voltage is less than the reference voltage, the primary lithium battery is judged to have reached the end of its service life. And, the given time is a periodic timing.
Abstract:
An alkaline electrochemical cell capable of providing optimum discharge efficiencies at both a high tech drain rate and a low drain rate is disclosed. In one embodiment, the ratio of the anode's electrochemical capacity to the cathode's electrochemical capacity is between 1.33:1 and 1.40:1 and the surface area of the anode to cathode interface is maximized.
Abstract:
A new sandwich cathode design is provided having a first cathode structure of a first cathode active material of a relatively low energy density but of a relatively high rate capability, for example SVO, mixed with a second cathode active material having a relatively high energy density but a relatively low rate capability, for example CFx, with the percentage of SVO being less than that of CFx and sandwiched between two current collectors. Then, a second cathode mixture of SVO and CFx active materials is contacted to the outside of the current collectors. However, the percentage of SVO to CFx is greater in the second structure than in the first. Such an exemplary cathode design might look like: (100−y)% SVO+y% CFx, wherein 0≦y≦100/current collector/(100−x)% SVO+x% CFx, wherein 0≦x≦100/current collector/(100−y)% SVO+y% CFx, wherein 0≦y≦100, and wherein the ratio of x to y is selected from the group consisting of y
Abstract translation:提供了一种新的夹层阴极设计,其具有第一阴极结构的第一阴极活性材料,该第一阴极活性材料具有相对低的能量密度但具有相对较高速率的能力,例如SVO,与具有较高能量密度的第二阴极活性材料混合,但是 相对较低的速率能力,例如CFx,SVO的百分比小于CFx的百分比,夹在两个集电器之间。 然后,SVO和CF x活性物质的第二阴极混合物与集电体的外部接触。 然而,在第二个结构中,SVO对CFx的比例大于第一个结构。 这种示例性阴极设计可能看起来像:(100-y)%SVO + y%CFx,其中0 <= y <= 100 /集电器/(100-x)%SVO + x%CFx,其中0 <= x <= 100 /集电体/(100-y)%SVO + y%CFx,其中0 <= y <= 100,并且其中x与y的比率选自y
Abstract:
A new sandwich cathode design is provided comprising a cathode active material mixed with a binder and a conductive diluent in at least two differing formulations. The formulations are then individually pressed on opposite sides of a current collector, so that both are in direct contact with the current collector. Preferably, the active formulation on the side of the current collector facing the anode is of a lesser percentage of the active material than that on the opposite side of the current collector. Such an exemplary cathode design might look like: SVO (100-x % active)/current collector/SVO (100-y % active)/current collector/SVO (100-x % active), wherein x is greater than y.
Abstract:
A battery having a built-in controller is disclosed that extends the run time of the battery. The controller may extend the run time of the battery, for example, by converting the cell voltage to an output voltage that is greater than a cut-off voltage of an electronic device, by converting the cell voltage to an output voltage that is less than the nominal voltage of the electrochemical cell of the battery, or by protecting the electrochemical cell from current peaks. The controller may also include a ground bias circuit that provides a virtual ground so that a converter may operate at lower cell voltages. The battery may be a single-cell battery, a universal single-cell battery, a multiple-cell battery or a multiple-cell hybrid battery.
Abstract:
The present invention relates to a new method of constructing and interrogating electrochemical cells, especially those having lithium thionyl chloride (Li/SOCl.sub.2) chemistry, that permits rapid estimation of remaining discharge capacity. A preferred embodiment of the present invention employs cells with specially modified anode structures and a method for testing the state of charge and remaining life of these cells, as well as depassivating these cells, prior to their intended use or re-use. The test method can be performed using an inexpensive DC circuit and voltmeter at ambient conditions anytime prior to cell use or re-use. There is also disclosed an oilfield services downhole tool battery having a remaining life indicator comprising a housing containing one or more electrochemical cells having an internal anode means which selectively gets consumed at a predetermined state of discharge thereby creating a step change in the cell output voltage which is imperceptible to the tool while in operation at downhole temperatures, and which is capable of being detected at the surface under ambient temperatures upon administering of a suitable current load enabling the user to determine the remaining battery life at the surface prior to subsequent use or reuse of the battery in downhole oilfield services operations.