Abstract:
A method for relieving residual stress in cast-in-place liners of high pressure die cast (HPDC) engine blocks to prevent cracking in the liners during the machining process. The method includes locally heating up the liners and the surrounding engine block material through rapid induction heating and then cooling down the liners and surrounding engine block material with still ambient air to a predetermined temperature after the residual stress has been reduced to a desired threshold.
Abstract:
A cast cylinder block for an internal combustion engine includes a first and a second cylinder bore and a shared bore wall. The first cylinder bore includes a first bore wall and the second cylinder bore includes a second bore wall. The shared cylinder bore wall includes a first portion and a second portion. A portion of the first bore wall combines with a portion of the second bore wall to form the shared cylinder bore wall. The first portion of the shared bore wall is an as-cast portion. The second portion of the shared bore wall is a metal matrix composite.
Abstract:
A cast cylinder block for an internal combustion engine includes a first and a second cylinder bore and a shared bore wall. The first cylinder bore includes a first bore wall and the second cylinder bore includes a second bore wall. The shared cylinder bore wall includes a first portion and a second portion. A portion of the first bore wall combines with a portion of the second bore wall to form the shared cylinder bore wall. The first portion of the shared bore wall is an as-cast portion. The second portion of the shared bore wall is a metal matrix composite.
Abstract:
A cylinder liner for an engine block includes a first engine block bonding surface, and a second engine block bonding surface that provides a lower heat transfer coefficient between the cylinder liner and an adjacent engine block material than the first engine block bonding surface. The second engine block bonding surface extends a substantial portion of the axial length of the cylinder liner.
Abstract:
Steel alloys and steel alloy cylinder liners are provided. Steel alloys can comprise iron, about 0.8% to about 2.1% manganese, about 0.10% to about 0.40% silicon, about 0.05% to about 0.30% sulfur, about 0.06% to about 0.16% phosphorus, about 0.09% to about 0.21% titanium, about 0.09% to about 0.21% aluminum, and either low carbon and about 0.0005% to about 0.0055% boron, or medium carbon. The steel alloy cylinder liners can be capable of achieving a mirror-like finish. The steel alloy cylinder liners can comprise ultra-thin wall thickness of less than about 1.5 mm or about 1.0 mm to about 0.5 mm. The steel alloy cylinder liners can comprise a Young's modulus of at least 200 GPa. The steel alloy cylinder liners can comprise a Young's modulus to density ratio of at least about 25.64 GPa/(g/cm3).
Abstract:
An improved surface activation technique improves the adhesion of thermal spray coatings, which is useful for engine cylinder bores. The new method includes compressing the cylinder bore surface to create a surface profile on the surface, such as through rolling a roller along the surface. An engine block is also provided, which includes a plurality of cylinder bores, each cylinder bore having an inner surface, and each inner surface having a surface profile that includes a helical groove and other surface profiles formed in the inner surface. A thermal spray coating is formed on the inner surface of each cylinder bore, the thermal spray coating being adhered to the surface profile of the inner surface. A roller assembly for activating the surface is also provided.
Abstract:
A computer-implemented system and method of rapidly predicting at least one of residual stress and distortion of a quenched aluminum casting. Input data corresponding to at least one of topological features, geometrical features and quenching process parameters associated with the casting is operated upon by the computer that is configured as a neural network to determine output data corresponding to at least one of the residual stress and distortion based on the input data. The neural network is trained to determine the validity of at least one of the input data and output data and to retrain the network when an error threshold is exceeded. Thereby, residual stresses and distortion in the quenched aluminum castings can be predicted using the embodiments in a tiny fraction of the time required by conventional finite-element based approaches.
Abstract:
A method for estimating proper eutectic modification level in a liquid metal to minimize macro shrinkage porosity and gas bubbles during casting of aluminum automobile components, and a system and article for casting.
Abstract:
A method of computationally determining material property changes for a cast aluminum alloy component. Accuracy of the determination is achieved by taking into consideration material property changes over the projected service life of the component. In one form, the method includes accepting time-dependent temperature data and using that data in conjunction with one or more constitutive relationships to quantify the impact of various temperature regimes or conditions on the properties of heat-treatable components and alloys. Finite element nodal analyses may be used as part of the method to map the calculated material properties on a nodal basis, while a viscoplastic model may be used to determine precipitation hardening and softening effects as a way to simulate the time and temperature dependencies of the material. The combined approach may be used to determine the material properties over the expected service life of a cast component made from such material.
Abstract:
A method for estimating proper eutectic modification level in a liquid metal to minimize macro shrinkage porosity and gas bubbles during casting of aluminum automobile components, and a system and article for casting.