Abstract:
An apparatus comprising is disclosed. The apparatus a driver circuit configured to selectively provide a first supply voltage to an output node in a first operating mode and to selectively provide a second supply voltage to the output node in a second operating mode, based on one or more enable signals.
Abstract:
An apparatus comprising is disclosed. The apparatus a driver circuit configured to selectively provide a first supply voltage to an output node in a first operating mode and to selectively provide a second supply voltage to the output node in a second operating mode, based on one or more enable signals.
Abstract:
Apparatuses, memory modules, and methods for performing intra-module data bus inversion operations are described. An example apparatus include a memory module comprising a data bus inversion (DBI) and buffer circuit and a plurality of memories. The DBI and buffer circuit configured to encode a block of data received by the memory module and to provide DBI data and a corresponding DBI bit to a respective memory of the plurality of memories.
Abstract:
Disclosed herein are circuitry and methods for transmitting data across a parallel bus using both high common mode and low common mode signaling. The transmitter stages are configured to work with two of three possible power supply voltages: a high Vddq voltage, a low Vssq voltage, and an intermediate Vx voltage. In one embodiment, the odd numbered transmitter stages, that drive the odd numbered outputs to the bus, use the Vddq and Vx supplies, such that the odd numbered outputs comprise high common mode signals. The even numbered transmitter stages, that drive the even numbered outputs to the bus, use the Vx and Vssq supplies, such that the even numbered outputs comprise low common mode signals.
Abstract:
Methods and apparatuses disclose various embodiments of time-domain signal generation. In one embodiment a method includes receiving an input waveform having a plurality of cycles with aspects of the input waveform being input and controllable by an end-user. A set of transform coefficients is calculated for at least some of the cycles using at least one hardware-based processor. A time-domain cycle is calculated for each set of transform coefficients. Other methods and apparatuses are disclosed.
Abstract:
Semiconductor dies and methods are described, such as those including a first capacitive pathway having a first effective series resistance (ESR) and a second capacitive pathway having an adjustable ESR. One such device provides for optimizing the semiconductor die for different operating conditions such as operating frequency. As a result, semiconductor dies can be manufactured in a single configuration for several different operating frequencies, and each die can be tuned to reduce (e.g. minimize) supply noise, such as by varying the ESR or the capacitance of at least one of the pathways.
Abstract:
An improved reference voltage (Vref) generator for a single-ended receiver in a communication system is disclosed. The Vref generator in one example comprises a cascoded current source for providing a current, I, to a resistor, Rb, to produce the Vref voltage (I*Rb). Because the current source isolates Vref from a first of two power supplies, Vref will vary only with the second power supply coupled to Rb. As such, the improved Vref generator is useful in systems employing signaling referenced to that second supply but having decoupled first supplies. For example, in a communication system in which the second supply (E.g. Vssq) is common to both devices, but the first supply (Vddq) is not, the disclosed Vref generator produces a value for Vref that tracks Vssq but not the first supply. This improves the sensing of Vssq-referenced signals in such a system.
Abstract:
Apparatus, systems, and methods are disclosed such as those that operate to encode data bits transmitted on a plurality of channels according to at least one of multiple Data Bus Inversion (DBI) algorithms. Additional apparatus, systems, and methods are disclosed.
Abstract:
Disclosed herein are circuitry and methods for transmitting data across a parallel bus using both high common mode and low common mode signaling. The transmitter stages are configured to work with two of three possible power supply voltages: a high Vddq voltage, a low Vssq voltage, and an intermediate Vx voltage. In one embodiment, the odd numbered transmitter stages, that drive the odd numbered outputs to the bus, use the Vddq and Vx supplies, such that the odd numbered outputs comprise high common mode signals. The even numbered transmitter stages, that drive the even numbered outputs to the bus, use the Vx and Vssq supplies, such that the even numbered outputs comprise low common mode signals.
Abstract:
Techniques are provided herein to increase a rate of data transfer across a large number of channels in a memory device using multi-level signaling. Such multi-level signaling may be configured to increase a data transfer rate without increasing the frequency of data transfer and/or a transmit power of the communicated data. An example of multi-level signaling scheme may be pulse amplitude modulation (PAM). Each unique symbol of the multi-level signal may be configured to represent a plurality of bits of data.