摘要:
Provided herein a device for discharging ink, the device comprising: a nozzle body comprising a chamber for accommodating ink, and a nozzle for discharging the ink to one surface of a target object; an electrode portion attached to or distanced from the nozzle body; a signal generator for applying a voltage to the electrode portion so that electrons may be induced to a liquid surface of the ink and an electrostatic force may be formed, the voltage being lower than a predetermined discharge critical voltage; a nozzle body driver for moving the nozzle body; and a controller for controlling the nozzle body driver to adjust a distance between the nozzle and the one surface of the target object so that an electrostatic force corresponding to the voltage higher than the discharge critical voltage may be formed and thus the ink may be discharged.
摘要:
The main object of the present invention is to provide a method for manufacturing a pattern formed body by the electric field jet method, capable of stabilizing the discharge amount and the discharge direction of a liquid. The present invention achieves the object by providing a method for manufacturing a pattern formed body characterized in that a pattern is formed on a substrate by: discharging a liquid from a discharge orifice by applying a voltage between a first electrode, disposed in the vicinity of the discharge orifice of a nozzle of a discharge head, and a second electrode, disposed in between the discharge orifice and the substrate, having an opening for discharge; and adhering the liquid onto the substrate by passing through the opening for discharge of the second electrode.
摘要:
A method of printing with a magnetic ink includes ejecting a plurality of magnetic ink drops onto a print medium in a print zone and applying a magnetic field to the ink drops on the print medium. The magnetic field increases a viscosity of the magnetic ink drops and reduces or eliminates absorption of the magnetic ink into a porous print medium such as paper.
摘要:
A fabricated structure for use with an associated marking device is provided. In one form, the fabricated structure includes a self-lifting spring finger having a nib for marking.
摘要:
A method of driving a hybrid inkjet printing apparatus includes applying an electrostatic voltage to ink contained in a nozzle, applying a waveform voltage to ink contained in the nozzle, the waveform voltage being applied by a piezoelectric driving device, and applying an ejection voltage so as to eject the ink.
摘要:
A liquid ejecting apparatus, including an electric potential control unit capable of switching between an identical electric potential state which sets a predetermined region of the liquid ejection unit side and a predetermined region of the ejecting medium support unit side to the identical electric potential and an electric potential difference generating state which generates the electric potential difference between both of them, wherein the liquid ejecting apparatus includes a configuration in which, when the ejecting medium passes through a liquid ejecting area to which the liquid is ejected by the liquid ejection unit, the electric potential control unit forms the identical electric potential state, and when the ejecting medium does not pass through the liquid ejecting area, the electric potential control unit forms the electric potential difference generating state for at least a proper period.
摘要:
A system that incorporates teachings of the present disclosure may include, for example, an apparatus having a tube with an ingress opening to receive a liquid, and an egress opening to release the liquid, a conductor positioned in a conduit of the tube, the conductor and the conduit having dimensions to cause a surface tension of the liquid to prevent a constant flow of the liquid from the egress opening, and a power supply coupled to the conductor to apply a charge to the liquid to overcome the surface tension and form at the egress opening a single jet stream of the liquid applicable on a substrate to create a pattern. The single jet stream can be controllable in part by a viscosity of the liquid. Additional embodiments are disclosed.
摘要:
An electrospray emitter (10) for emitting a liquid comprising a sheet (40) having a channel (65) opening to an aperture (55) on a flat emitter surface extending across the sheet (40). A charging electrode (80) coupleable to an electrical supply and arranged to apply an electrical charge to liquid passing into the channel (65). A control electrode (50) proximal to the channel (65) for controlling electrospray emission, that may be embedded in the sheet. A non-wetting or insulating layer (30) may be applied to the sheet.
摘要:
An inkjet printing apparatus according to example embodiments may include a flow channel plate including an ink inlet for introducing ink, a pressure chamber containing the introduced ink, and a nozzle connected to the pressure chamber and configured to eject ink. A piezoelectric voltage applier may apply a piezoelectric driving voltage to the piezoelectric actuator in such a way that the volume of the pressure chamber is reduced so as to eject an ink droplet. An electrohydrodynamic voltage applier may apply a first electrohydrodynamic driving voltage and a second electrohydrodynamic driving voltage to the electrohydrodynamic actuator. The first electrohydrodynamic driving voltage may generate a jet from the ink droplet such that the jet is ejected towards a printing medium, and the second electrohydrodynamic driving voltage (which has an opposite polarity to that of the first electrohydrodynamic driving voltage) may restore the ink droplet to the nozzle.
摘要:
Provided are various methods and devices for electrohydrodynamic (E-jet) printing. The methods relate to sensing of an output current during printing to provide control of a process parameter during printing. The sensing and control provides E-jet printing having improved print resolution and precision compared to conventional open-loop methods. Also provided are various pulsing schemes to provide high frequency E-jet printing, thereby reducing build times by two to three orders of magnitude. A desk-top sized E-jet printer having a sensor for real-time sensing of an electrical parameter and feedback control of the printing is provided.