Abstract:
A system that incorporates teachings of the present disclosure may include, for example, an apparatus having an outer nozzle operable to discharge an outer stream of a shell solution, and an inner nozzle operable to discharge an inner stream of a core solution intermixed with a plurality of materials. The outer stream can substantially surrounds the inner stream, thereby forming a combined stream. A plurality of capsules can be formed responsive to a force applied to the combined stream. At least a portion of the plurality of capsules are desirable capsules, each having a core encapsulated by a portion of the shell solution. The core can have at least one of the plurality of materials encapsulated by a portion of the core solution without protruding an outer surface of the portion of the shell solution. Additional embodiments are disclosed.
Abstract:
A method of forming particles comprises accelerating a stream comprising a liquid; and vibrating the stream, to form particles. The particle may have a diameter that is smaller than the diameter of the nozzle used to form the stream, allowing for the formation of micro- and nano-sized particle.
Abstract:
A method of forming particles, comprises accelerating a first stream comprising a first liquid, applying a charging voltage of at most 1.5 kV to the first stream, and vibrating the first stream, to form particles.
Abstract:
A method for producing a thin film or nanoparticle deposit includes the step of providing a working liquid, movement of the working liquid at a liquid surface prevented by surface tension. The method also includes the steps of supplying an electric charge having a first polarity to the working liquid at the liquid surface to overcome surface tension at the liquid surface to produce a first plurality of charged nanodrops and directing the first plurality of charged nanodrops against a substrate surface. The method further includes the steps of supplying an electric charge having a second polarity to the working liquid at the liquid surface, the second polarity being opposite to the first polarity, to overcome surface tension at the liquid surface to produce a second plurality of charged nanodrops, and directing the second plurality of charged nanodrops against the substrate surface. The method additionally includes the step of alternating between supplying the electric charge having the first polarity and supplying the electric charge having the second polarity to the working liquid at the liquid surface. An apparatus for producing a thin film or nanoparticle deposit includes an apparatus for supplying a working liquid, surface tension preventing movement of the working liquid from the apparatus for supplying a working fluid at a liquid surface, an apparatus for supplying an electric charge to the working liquid at the liquid surface to overcome the surface tension to produce a stream of nanodrops, and an apparatus for supplying electric charge of alternating polarity to the apparatus for supplying the electric charge to the working liquid at the liquid surface.
Abstract:
An electrohydrodynamic spray apparatus includes a liquid inlet and a spray nozzle in fluid communication with the liquid inlet, where the spray nozzle has an opening downstream of the liquid inlet. An inner electrode is situated at least partially inside the spray nozzle. An outer electrode is situated external to the spray nozzle and within about 100 mm of the opening of the nozzle. The electrohydrodynamic spray apparatus can be combined with a substrate to form an electrohydrodynamic spray system. The electrohydrodynamic spray apparatus or system can be used to form nanostructures such as nanodrops, nanoparticles and thin films.
Abstract:
A system that incorporates teachings of the present disclosure may include, for example, an apparatus having an outer nozzle operable to discharge an outer stream of a shell solution, and an inner nozzle operable to discharge an inner stream of a core solution intermixed with a plurality of materials. The outer stream can substantially surrounds the inner stream, thereby forming a combined stream. A plurality of capsules can be formed responsive to a force applied to the combined stream. At least a portion of the plurality of capsules are desirable capsules, each having a core encapsulated by a portion of the shell solution. The core can have at least one of the plurality of materials encapsulated by a portion of the core solution without protruding an outer surface of the portion of the shell solution. Additional embodiments are disclosed.
Abstract:
One embodiment includes forming a nanowire on a substrate from an organometallic vapor. The nanowire is grown during this formation in a direction away from the substrate and is freestanding during growth. The nanowire has a first dimension of 500 nanometers or less and a second dimension extending from the substrate to a free end of the nanowire at least 10 times greater than the first dimension. In one form, the organometallic vapor includes copper, silver, or gold. Alternatively or additionally, the nanowire is of a monocrystalline structure.
Abstract:
A method of forming particles, comprises accelerating a first stream comprising a first liquid, applying a charging voltage of at most 1.5 kV to the first stream, and vibrating the first stream, to form particles.
Abstract:
A method of forming particles comprises accelerating a stream comprising a liquid; and vibrating the stream, to form particles. The particle may have a diameter that is smaller than the diameter of the nozzle used to form the stream, allowing for the formation of micro- and nano-sized particle.
Abstract:
One embodiment includes forming a nanowire on a substrate from an organometallic vapor. The nanowire is grown during this formation in a direction away from the substrate and is freestanding during growth. The nanowire has a first dimension of 500 nanometers or less and a second dimension extending from the substrate to a free end of the nanowire at least 10 times greater than the first dimension. In one form, the organometallic vapor includes copper, silver, or gold. Alternatively or additionally, the nanowire is of a monocrystalline structure.