摘要:
The invention provides a method for both disposing of an environmentally undesirable material comprising petroleum coke and the sulfur and heavy metals contained therein and of providing fuel for a process of making molten iron or steel preproducts and reduction gas in a melter gasifier having an upper fuel charging end, a reduction gas discharging end, a lower molten metal and slag collection end, and means providing an entry for charging ferrous material into the melter gasifier; introducing a carbonaceous fuel including petroleum coke into the melter gasifier at the upper fuel charging end; blowing oxygen-containing gas into the petroleum coke to form at least a first fluidized bed of coke particles from the petroleum coke; introducing ferrous material into the melter gasifier through the entry means, reacting petroleum coke, oxygen and particulate ferrous material to combust the major portion of the petroleum coke to produce reduction gas and molten iron or steel preproducts containing heavy metals freed from combustion of the petroleum coke and a slag containing sulfur freed from combustion of the petroleum coke.
摘要:
A method for the production of an iron-based feedstock suitable for use as the feedstock for steel mills, from industrial waste streams containing iron, by combining an iron poor material such as exhaust fumes from metals production processes with the waste streams, treating the combined waste stream with an ammonium chloride leaching solution, separating the undissolved precipitates comprising iron compounds from the leachant solution, and further treating the undissolved precipitants by elevated temperature roasting, resulting in the iron-based feedstocks.
摘要:
A process for producing molten pig iron or molten steel pre-products from charging substances formed of iron ores and fluxes and at least partially comprising fines, wherein the charging substances are directly reduced to sponge iron in at least one reduction zone by the fluidized layer process, the sponge iron is melted in a melting-gasifying zone under supply of carbon carriers and oxygen-containing gas, and a CO and H.sub.2 -containing reducing gas is produced, which is injected into the reduction zone, is reacted there, is withdrawn as an export gas and is supplied to a consumer, is to be improved with a view to rendering feasible the use of fine ore in an economic manner. This is effected in thatprimarily hematite and/or magnetite fine ores and/or ore dusts are subjected to preheating by the fluidized layer process in a preheating zone,the thus preheated charging substances are completely reduced to a major extent in at least one consecutively arranged reduction zone,whereupon at least the more finely particulate charging substances are charged into the fluidized bed and/or, if desired, also into the fixed bed, of the melting-gasifying zone by forced conveyance, preferably by pneumatic conveyance, and are melted there.
摘要:
A process and apparatus for smelting reduction of ores or pre-reduced metal carriers in the form of an emulsion composed of slag, liquid metal and floating coke particles which pass from a smelting reduction reactor to a separate settling tank through a connection conduit. At least one lance is provided for blowing a "hard" stream of oxygen into the settling tank while a second lance is provided for blowing a relatively "soft" stream of oxygen into the settling tank. The relatively softly blown stream of oxygen sufficiently increases the volume of gas in the settling tank beyond that resulting from the hard oxygen stream alone so as to drive back coke particles floating on the emulsion from the settling tank to the smelting reduction reactor through the connection conduit.
摘要:
In method and apparatus for producing iron and steel from iron cores largely composed of iron oxides, wherein a direct reduction process is used to produce a solid particulate intermediate product, generally known as sponge Iron or Direct Reduced Iron (DRI); pneumatically conveying large iron-bearing particles, such as pelletized iron ore or particularly DRI, in a closed transport pipe, eg. from the reduction reactor of the direct reduction process to the metallurgical furnaces where liquid iron or steel are produced, for example electric arc furnaces, induction furnaces, basic oxygen furnaces, etc. or to a briquetting press to form DRI briquettes, or simply to a silo or storage bin, or in general to a subsequent processing step for said DRI. When the carrier gas is recirculated for reuse, surprisingly air can be a preferred source of such gas, especially for reactive hot DRI. This method has a superior efficiency and productivity and reduces the overall energy consumption relative to currently used DRI steelmaking plants.By using pneumatic conveyors, elements of the plant may be arranged side by side rather than one on top of the other, whereby the overall height of the plant may be reduced.
摘要:
In a first fluidized bed vessel containing an expanded fluidized bed, iron oxide-containing materials are reduced under weakly reducing conditions with solid carbonaceous reducing agents to or to less than the FeO state. In a second fluidized bed vessel containing an expanding fluidized bed the gas-solids suspension discharged from the first fluidized bed vessel is treated with a highly reducing fluidizing gas whereby the material is reduced in part to iron metal. From the gas-solid suspension discharged from the second fluidized bed vessel the carbonized carbonaceous material is separated and is recycled to the first fluidized bed vessel. The exhaust gas from which the carbonized carbonaceous material has been removed is purified and CO.sub.2 is removed therefrom and the exhaust gas is subsequently fed as a fluidizing gas to the second fluidized bed vessel. A reduced material which has a degree of metallization from 50 to 80% and the remainder of the carbonized carbonaceous material are discharged from the second fluidized bed vessel and in a melting reactor are completely reduced and melted.
摘要:
The invention relates to a method for protecting the refractory lining of a metallurgical reaction vessel containing a smelt consisting of metal and slag, the reacting agents for the smelt being fed to the metal bath through introducing means disposed below and above the bath surface, and the gases escaping from the smelt being afterburned with oxidizing agents in the gas space, i.e. in the space above the still smelt, whereby gaseous reacting agents and/or gases acting inertly in the metal bath are fed to the smelt below the bath surface, and the total refractory lining surface in the gas space of the metallurgical reaction vessel is wetted by partial amounts of smelt in the form of drops, splashes, liquid portions rising or ejected eruptively and like a fountain and/or by wave or sloshing motion of the smelt.
摘要:
A process for producing pig iron is described, which contains a reducing shaft furnace 1 and a melting gasifier 2. The sponge iron produced from iron ores in the reducing shaft furnace is supplied to the melting gasifier and converted there into a pig iron melt. The gas produced in the melting gasifier is supplied directly via a line 4 as reducing gas to the reducing shaft furnace. The blast furnace gas passing out of the reducing shaft furnace, after traversing a CO.sub.2 scrubber 6, is at least partly heated in a heat exchanger to 200.degree. to 500.degree. C. and passed to a partial combustion plant 13 where, accompanied by the addition of oxygen, the gas is heated to the necessary reducing temperature.
摘要:
A fluidized bed direct process for reducing raw iron ore fines and directly producing an iron product comprises a process for feeding raw iron ore fines into a multi-stage reactor assembly; a process for reducing fines in fluidized beds developed by a counter-current flow of reducing gas, where the reducing gas is developed in a process for directly producing slag and iron in a gasifier/smelter assembly; a process for producing iron by further reducing and removing impurities from a part of the reduced iron ore in a gasifier/smelter assembly; a process for compacting excess reduced iron ore; and, a process for preparing reducing gas from offgas exiting said gasifier/smelter assembly; and, a process for recycling spent reducing gas exiting said reactor assembly. The processed offgas is 100% utilizable as reducing gas by balancing the reduced iron ore between the gasifier/smelter and compacting assemblies. The iron product exiting said gasifier/smelter assembly is refinable into steel with standardly available refining methods, such as those using ladle or basic oxygen furnaces for removal of impurities prior to casting.
摘要:
A method for controlling a flow rate of gas for prereducing ore comprises the steps of prereducing ore in a prereduction furnace having a fluidized bed with a gas generated in a smelting reduction furnace and controlling a pressure of gas generated in the smelting reduction furnace and introduced into the prereduction furnace, thereby controlling the actual flow rate of gas introduced into the prereduction furnace. An apparatus for controlling a flow rate of gas for prereducing ore comprises a flow passage for introducing gas generated in a smelting reduction furnace into a prereduction furnace and a gas pressure control valve positioned in the flow passage.