Abstract:
A Bluetooth master radio frequency unit addresses a slave radio frequency unit, to enable the slave to synchronize to the master, by sending poll packets and optionally null packets over an active link, the master being arranged so that receipt of a response from the slave unit to a poll packet is sufficient to maintain the active link. The slave unit does not have to respond to all of the poll packets. This approach can allow the slave to preserve more (transmit) power by going into a deep sleep mode in which a low power oscillator may be used while still allowing the master unit to detect whether the slave has resynchronized or not (and thus to update a Link Supervision Timer, for example).
Abstract:
An embodiment of an amplifier circuit comprising a succession of amplification stages having at least a first amplification stage receiving a first signal and a second amplification stage downstream of the first amplification stage; a stage of unity gain capable of receiving the first signal and of providing a second signal corresponding to the low-impedance copy of the first signal; and a third amplification stage having its input connected to the output of the stage of unity gain by a capacitor and having its output connected to the output of the second amplification stage.
Abstract:
A method for processing an incident pulsed signal of an ultra wide band type received over a channel by a data device operating in a wireless data communications system is provided. The incident pulsed signal carries information within a super-frame structure. Upon reception of each super-frame structure by a data device, coarse synchronization is performed with another data device acting as a coordinator device for the wireless data communications system. The coarse synchronization uses a first training sequence. Upon reception of each frame allocated to the data device operating within the super-frame structure, channel estimation is performed using a second training sequence. The channel estimation also performs a frame synchronization.
Abstract:
The method and device include determining by removing N−N, rows from an original generator matrix (G) defining the LDPC code and having N rows and N−M columns for obtaining a generator sub-matrix (G1) having N−M columns and N1 rows. The method also includes delivering by receiving an input data vector of size N−M and multiplying the input vector with the generator sub-matrix for obtaining the punctured encoded code word.
Abstract:
A radio frequency digital-to-analog converter with a programmable current output. In exemplary aspects of the invention, improved apparatus and methods for providing (i) current mirror matching, (ii) enhanced current pulse rising edge performance, (ii) reduced base voltage swing, and (iv) compensated high voltage swing, are provided. The foregoing apparatus and methods can be applied to any RF signal application (wireless or otherwise), including for example wireless cellular handsets.
Abstract:
A detection device includes an antenna for receiving an incident signal, and for delivering a base signal. A comparator receives the base signal and provides an intermediate signal representative of the sign of the base signal relative to a reference signal. A sampling circuit samples the intermediate signal for providing a digital signal. A digital processing circuit correlates the digital signal with a predetermined correlation signal.
Abstract:
The invention relates to a TFA image sensor with stability-optimized photodiode for converting electromagnetic radiation into an intensity-dependent photocurrent with an intermetal dielectric, on which, in the region of the pixel matrix, a lower barrier layer is situated and a conductive layer is situated on the barrier layer, and vias being provided for the contact connection to the ASIC, the vias in metal contacts on the ASIC. A TFA image sensor having improved electrical properties is provided. This is achieved in that an intrinsic absorption layer is provided between the TCO layer and the barrier layer with a layer thickness of between 300 nm and 600 nm. Before the application of the photodiodes, the topmost, comparatively thick metal layer of the ASIC is removed and replaced by a matrix of thin metal electrodes which form the back electrodes of the photodiodes, the matrix being patterned in the pixel raster.
Abstract:
The invention relates to a method for producing a TFA image sensor in which a multi-layer arrangement comprising a photo diode matrix is arranged on an ASIC switching circuit provided with electronic circuits for operating the TFA image sensor, such as pixel electronics, peripheral electronics and system electronics, for the pixel-wise conversion of electromagnetic radiation into an intensity-dependent photocurrent, the pixels being connected to contacts of the underlying pixel electronics of the ASIC switching circuit. The method enables conventionally produced ASIC switching circuits to be used without impairing the topography of the photoactive sensor surface. The CMOS passivation layer in the photoactive region and then the upper CMOS metallization are removed and replaced by a metallic layer which is structured in the pixel raster, for the formation of back electrodes. The photo diode matrix is then applied and structured, said photo diode matrix being embodied as a pixel matrix, on which a passivating protective layer and/or a color filter layer having a passivating action can be applied.
Abstract:
A processor architecture for multimedia applications includes processor clusters providing vectorial data processing capability. Processing elements in the processor clusters process both data with a bit length N and data with bit lengths N/2, N/4, and so on according to a Single Instruction Multiple Data (SIMD) function. A load unit loads into the processor clusters data to be processed according to a same instruction. An intercluster data path exchanges data between the processor clusters. The intercluster data path is scalable to activate selected processor clusters. The processor operates simultaneously on SIMD, scalar and vectorial data.
Abstract:
Pulses of a signal, which are respectively contained in successive time windows, may be generated by a generator, and a control device may formulate a control signal for the generator including, for each pulse, an indication of its position in the corresponding window. The control device may include a processor to deliver for each time window, at a delivery frequency Fe greater than the pulse repetition frequency, successive groups of N bits together defining a digital cue of position of a pulse inside the window. Also, a converter may convert this digital position cue into the control signal temporally spread over the length (T) of the window and including the indication of position at an instant corresponding to the digital position cue. This makes it possible to position the pulse inside its window with a temporal precision equal to 1/N*Fe.
Abstract translation:分别包含在连续时间窗口中的信号的脉冲可以由发生器产生,并且控制装置可以为发生器制定一个控制信号,包括对于每个脉冲,其在相应窗口中的位置的指示。 控制装置可以包括处理器,以大于脉冲重复频率的传送频率Fe传送每个时间窗口,N个位的连续组一起定义窗口内的脉冲的位置的数字提示。 此外,转换器可以将该数字位置提示转换成在窗口的长度(T)上暂时分布的控制信号,并且包括在对应于数字位置提示的时刻的位置指示。 这使得可以以等于1 / N * Fe的时间精度将脉冲定位在其窗口内。