Abstract:
A circuit that includes: a photodiode configured to absorb photons and to generate photo-carriers from the absorbed photons; a first MOSFET transistor that includes: a first channel terminal coupled to a first terminal of the photodiode and configured to collect a portion of the photo-carriers generated by the photodiode; a second channel terminal; and a gate terminal coupled to a first control voltage source; a first readout circuit configured to output a first readout voltage; a second readout circuit configured to output a second readout voltage; and a current-steering circuit configured to steer the photo-carriers generated by the photodiode to one or both of the first readout circuit and the second readout circuit.
Abstract:
Methods, systems, and devices are disclosed for low noise and high efficiency photoelectric amplification based on cycling excitation process (CEP). In some aspects, a device for amplifying signals of light-induced photocurrent includes an anode connected to a positive terminal of a voltage source; a disordered material layer coupled to the anode, wherein the disordered material layer is structured to have a thickness of 100 nm or less; and a cathode coupled to the disordered material layer and connected to a negative terminal of the voltage source, in which the device is operable to amplify photoexcited carriers based on photon absorption to produce an external quantum efficiency of the device that is at least 100%.
Abstract:
Disclosed is a manufacturing method of a solar cell, including forming a photoelectric converter including an amorphous semiconductor layer, forming an electrode connected to the photoelectric converter, and performing a post-treatment by providing light to the photoelectric converter and the electrode.
Abstract:
This application is directed to a low cost IC solution that provides Super CMOS microelectronics macros. Hereinafter, SCMOS refers to Super CMOS and Schottky CMOS. SCMOS device solutions includes a niche circuit element, such as complementary low threshold Schottky barrier diode pairs (SBD) made by selected metal barrier contacts (Co, Ti, Ni or other metal atoms or compounds) to P- and N-Si beds of the CMOS transistors. A DTL like new circuit topology and designed wide contents of broad product libraries, which used the integrated SBD and transistors (BJT, CMOS, and Flash versions) as basic components. The macros are composed of diodes that are selectively attached to the diffusion bed of the transistors, configuring them to form (i) generic logic gates, (ii) functional blocks of microprocessors and microcontrollers such as but not limited to data paths, multipliers, muliplier-accumaltors, (ii) memory cells and control circuits of various types (SRAM's with single or multiple read/write port(s), binary and ternary CAM's), (iii) multiplexers, crossbar switches, switch matrices in network processors, graphics processors and other processors to implement a variety of communication protocols and algorithms of data processing engines for (iv) Analytics, (v) block-chain and encryption-based security engines (vi) Artificial Neural Networks with specific circuits to emulate or to implement a self-learning data processor similar to or derived from the neurons and synapses of human or animal brains, (vii) analog circuits and functional blocks from simple to the complicated including but not limited to power conversion, control and management either based on charge pumps or inductors, sensor signal amplifiers and conditioners, interface drivers, wireline data transceivers, oscillators and clock synthesizers with phase and/or delay locked loops, temperature monitors and controllers; all the above are built from discrete components to all grades of VLSI chips. Solar photovoltaic electricity conversion, bio-lab-on-a-chip, hyperspectral imaging (capture/sensing and processing), wireless communication with various transceiver and/or transponder circuits for ranges of frequency that extend beyond a few 100 MHz, up to multi-THz, ambient energy harvesting either mechanical vibrations or antenna-based electromagnetic are newly extended or nacent fields of the SCMOS IC applications.
Abstract:
A method for forming an amorphous semiconductor which contains an impurity element and has low resistivity and a method for manufacturing a semiconductor device with excellent electrical characteristics with high yield are provided. In the method for forming an amorphous semiconductor containing an impurity element, which utilizes a plasma CVD method, pulse-modulated discharge inception voltage is applied to electrodes under the pressure and electrode distance with which the minimum discharge inception voltage according to Paschen's Law can be obtained, whereby the amorphous semiconductor which contains an impurity element and has low resistivity is formed.
Abstract:
A method for producing a heterojunction solar cell including the following successive steps: providing a substrate made from crystalline semiconductor material, doped with a first type of doping, and provided with a first main face; depositing a first layer of intrinsic amorphous semiconductor material on said first main face of the substrate; and forming a second layer of amorphous semiconductor material on the first layer. The method includes deposition of a barrier layer between the first and second layers, said barrier layer being of different nature from those of the first and second layers and includes doping of the second layer by ion implantation.
Abstract:
A method of fabricating a pixelated projector display includes providing a wafer with a supporting substrate, a first semiconductive layer, an emission layer, and a second semiconductive layer. The wafer is patterned into an array of LEDs/LDs and a planarization layer is deposited over the array. One via for each LED/LD element is formed through the planarization layer. A MOTFT backplane is positioned on the planarization layer, one driver circuit in controlling electrical communication with each via through the planarization layer. A passivation layer is deposited over the MOTFT backplane and heat plugs are extended through the passivation layer, the MOTFT backplane, the planarization layer, and the III-V LED/LD wafer partially through the first semiconductive layer to thermally couple heat from the array of LEDs/LDs to the surface of the passivation layer. An upper end of the heat plugs is accessible for thermal coupling to a heat spreader and/or a heatsink.
Abstract translation:制造像素化投影仪显示器的方法包括向晶片提供支撑衬底,第一半导体层,发射层和第二半导体层。 将晶片图案化成LED / LD阵列,并且平坦化层沉积在阵列上。 通过平坦化层形成每个LED / LD元件的一个通孔。 MFTFT背板位于平坦化层上,一个驱动电路通过平坦化层控制与每个通孔的电连通。 钝化层沉积在MOTFT背板上,并且热插塞通过钝化层,MOTFT背板,平坦化层和III-V LED / LD晶片部分延伸穿过第一半导体层,以热耦合来自 LED / LDs到钝化层的表面。 散热器和/或散热器的热连接可以接近热塞的上端。
Abstract:
The photoelectric conversion element includes a semiconductor substrate, a first amorphous film of a first conductivity type disposed on an entire surface of one surface of the semiconductor substrate, a first conductive oxide layer disposed on the first amorphous film, a second amorphous film of the first conductivity type disposed on a part of the other surface of the semiconductor substrate, a second conductive oxide layer disposed on the second amorphous film, a third amorphous film of a second conductivity type disposed on the other part of the other surface of the semiconductor substrate, and a third conductive oxide layer disposed on the third amorphous film. Electric conductivity of the first conductive oxide layer is lower than electric conductivities of the second and the third conductive oxide layer. Transmittance of the first conductive oxide layer is higher than transmittances of the second and the third conductive oxide layer.
Abstract:
A method for manufacturing a solar cell includes preparing a semiconductor substrate having a first conductivity type dopant; ion-implanting a pre-amorphization elements into a front surface of the semiconductor substrate to form an amorphous layer; and forming an emitter layer by ion-implanting second conductivity type dopant into the front surface of the semiconductor substrate. The method then further includes heat-treating the layers to activate the second conductivity type dopant. The method further includes forming a back surface field layer at a back surface of the semiconductor substrate by ion-implanting a first conductivity type dopant.
Abstract:
A thin film solar cell includes a substrate, a first electrode and a second electrode positioned on one surface of the substrate, and a photoelectric conversion unit positioned between the first electrode and the second electrode. The photoelectric conversion unit includes a plurality of photoelectric conversion layers each including a p-type semiconductor layer, an i-type semiconductor layer, and an n-type semiconductor layer. At least one of the p-type semiconductor layers of the plurality of photoelectric conversion layers contains microcrystalline silicon (mc-Si) and amorphous silicon oxide (a-SiOx).