Abstract:
The invention relates to an anti-theft method for a vehicle. In accordance with the invention, a code word (K1) chosen by the user, and the serial number ESN or IMEI of the telephone (K2) are stored in a fastener element (4) connected to the vehicle (5) and serving as a cradle for the portable telephone (1). Before starting, the user is to put his telephone in its place in the fastener element. The telephone automatically verifies whether its serial number ESN or IMEI is identical with the one that is stored in the fastener element. In that case, the starter means of the vehicle are unblocked so that the action of the ignition key makes a start possible. In the opposite case, the starter means remain blocked.
Abstract:
An interference detection circuit includes a circuit, in particular a non-linear circuit, for defining a discrimination curve in terms of instantaneous magnitude and instantaneous frequency, and a circuit, in particular a differential amplifier, for detecting whether a combination, in particular the product, of the instantaneous magnitude and the instantaneous frequency of the inputted signal exceeds the discrimination curve, in which case, a control circuit controls the gating of the inputted signal. The discrimination defining circuit has a control input for adapting the discrimination curve to the average instantaneous magnitude, in particular, the product of the instantaneous magnitude and the instantaneous frequency of the input signal. Thus, small as well as larger input signal amplitudes on which interference is superimposed can be discriminated adequately and reliably in order to minimize audible effects of leaving out interfered part of the input signal.
Abstract:
The invention relates to a rotary-anode X-ray tube which includes a sleeve bearing comprising an inner bearing member (9) and an outer bearing member (8). The inner bearing member itself includes three bearing portions, the first (94) of which takes up the axial bearing forces whereas the second bearing portion takes up the radial bearing forces and the third bearing portion (96) interconnects the first and the second bearing portion in such a manner that the symmetry axis (11) of the first or the second bearing portion can perform a swaying motion about the axis of rotation (10) during rotation of the two bearing members. Adequate bearing capacity is thus ensured even when the axial bearing surfaces do not extend exactly perpendicularly to the radial bearing surfaces.
Abstract:
A device for optically scanning a record carrier with radiation beam having a high numerical aperture. The radiation beam is focused on the record carrier by an objective lens and a plano-convex lens. The plano-convex lens has a gap with the record carrier of several tens of micorometers. It focuses the radiation beam to a point at least 30 focal depths away from an aplanatic point of the plano-convex lens. As a consequence, the lens has a relatively large tolerance for sideways movements.
Abstract:
In a beam current measurement device, including an output transistor (T1) for supplying a cathode current (Ic), a measurement output (OUTM) for supplying a measured current (Im) representing the cathode current (Ic), a first current source (Ibias1) coupled to a first main terminal of the output transistor (T1) for supplying a first current (Ibias1), and a second current source (Ibias2) coupled to a second main terminal of the output transistor (T1) for supplying a second current (Ibias2) substantially equal to the first current (Ibias1), a first cascode transistor (Ta) is coupled between the first main terminal of the output transistor (T1) and the measurement output (OUTM).
Abstract:
The invention relates to a method of determining, utilizing magnetic resonance, a temperature distribution of a part of an object which is arranged in a substantially uniform steady magnetic field, the determination of the temperature distribution involving the determination of a reference image of the object, for example a part of the human body, and a phase image of the human body. Subsequently, the temperature distribution is determined from phase differences between the values of pixels of the phase image and the values of corresponding pixels of a predetermined reference phase image. In order to counteract errors in the temperature distribution which are caused by motion of the object, navigator pulse sequences are generated so as to measure navigator signals prior to the measurement of MR signals wherefrom the reference image and the phase image are reconstructed. Subsequently, a correction for correction of the temperature distribution is derived from the navigator signals.
Abstract:
A thin film transistor (10) in an electronic device such as an active matrix display panel having an intrinsic amorphous silicon semiconductor layer (22) providing a channel region (23) between source and drain electrodes (14, 16) includes directly adjacent to the side of the semiconductor layer (22) remote from the gate electrode (25) at the channel region (23) a layer (20) of amorphous semiconductor material which has a high defect density and low conductivity that serves to provide recombination centres for photogenerated carriers. Leakage problems due to the photoconductive properties of the intrinsic semiconductor material are then reduced. Conveniently, an hydrogenated silicon rich amorphous silicon alloy (e.g. nitride etc) can be used for the recombination centre layer (20).
Abstract:
In a method of determining minimal length routes through a network comprising nodes and links, the data defining the nodes and links is divided into two levels of nodes and links, the first higher level being used to determine the major portion of the route. Lower level nodes are attached to a specified point of one or more higher level links. If a start or finish point of a route is in the lower level set, the route is completed by adding the start and/or finish node to the first set together with the links from that node to all the nodes in the first set to which it is connected. This minimizes the time needed to generate the route due to the lower number of nodes and links which have to be examined in order to generate the route.
Abstract:
A integrated circuit (100) includes a plurality of cores (110, 120). With each core (110, 120) is associated a TCB (112, 122) for controlling the core in a test mode thereof. Each TCB has a shift register (220) for holding test control data. The TCBs (112, 122) are serially linked in a chain (140) so that, the test control data can be serially shifted in. A system TCB (130) is provided in the chain (140) comprising a further shift register (220). The system TCB (130) is connected to each TCB (112, 122) for, after receiving a particular set of test control data in its shift register (220), providing the TCBs (112, 122) with a system test hold signal for switching between a shift mode and an application mode of the TCBs (112, 122).