Abstract:
The present invention relates to a method of forming a crosslinked polymer gel, to a polymer gel produced by such method and to uses of such polymer gel.
Abstract:
The present invention relates to a method of activating a silicon surface for subsequent patterning of molecules onto said surface, and to patterns produced by this method, and further to uses of said pattern.
Abstract:
The present invention relates to a method of forming a polymer dispersed liquid crystal cell. It also relates to a cell produced by such method and to uses of such cells.
Abstract:
Between each transparent pixel electrode driven by TFT as a drive device and a common electrode, a polymer layer located in contact with the transparent pixel electrode and electrically active to change in color by electrochemical oxidization or reduction and a polymeric solid electrolytic layer located in contact with the polymer layer and containing a coloring agent are interposed. Since electrochemical oxidization or reduction brings about a color change, the contrast and the black concentration can be enhanced, and bronzing after long-time use does not occur.
Abstract:
The present invention relates to a composition comprising at least one type of liquid crystal, to a liquid crystal cell and liquid crystal display device comprising such composition and to a method of preparing such a composition and/or such a liquid crystal cell.
Abstract:
The invention relates to a nanoparticle film comprising a nanoparticle network formed of nanoparticles interlinked by linker molecules. The linker molecules have at least two linker units that can bind to the surface of the nanoparticles. By introducing selectivity-enhancing units in the linker molecule, the selectivity of the nanoparticle film towards target analytes can be enhanced. A fine-tuning of the selectivity can be achieved by including a fine-tuning unit in the vicinity of the selectivity-enhancing unit. The nanoparticle film can be used to produce chemical sensors which are selective and stable in their performance.
Abstract:
The present invention relates to molecules exhibiting rectifying properties. In particular, the present invention relates to a molecular rectifying assembly, comprising the general structure METAL1-CON1-BRIDGE-CON2-METAL2 in which CON1 and CON2 are a connecting group or connecting part and independently of each other are molecular groups bound to METAL1,2 in such a way that an adsorbate state with an energy close to the Fermi energy of the metal is formed at one or both of the METAL1,2/CON1,2 interfaces, METAL is selected from metals and/or alloys of metals, and BRIDGE is the core of the molecule, consisting of pi-conjugated and non-conjugated parts. Furthermore, the present invention relates to uses of said molecular rectifying assembly or the production of electronic devices where molecules are placed between at least two electrodes.