摘要:
A self-contained device which continuously dispenses a packaged fluid is disclosed. The device is particularly suited for applications where several months may lapse before performance is manually initiated, after which a consistent steady flow is required for an extended period until the packaged fluid is exhausted. The device is particularly suited for applications where ease of fabrication is important. The device utilizes an electrochemicalIy-generated gas, such as oxygen or nitrogen, to pressurize the packaged fluid to dispense it. Oxygen can be electrochemically released from a solid anode material of the general form AxOy as A ions migrate across a suitable ion-conducting electrolyte. Alternatively, nitrogen can be the pressurizing gas wherein it is electrochemically released from a solid, anode material of the general form A'.sub..alpha. N.sub..beta. where A' is a cation, as A' ions migrate across a suitable ion-conducting electrolyte. At the cathode, several possibilities may occur, either the migrated cations are reduced to their elemental state, or a solid material, R.sub.2, where R is a halogen, is reduced to R.sup.-, or solid material, R', where R' is a group VIB element other than oxygen is reduced to R'.sup.-2, or solid material CR.sub.x, is reduced to C+XR.sup.-. The released gas, oxygen or nitrogen, pressurizes a chamber resulting in fluid contained in a flexible bladder within the chamber to be forced through an outlet. Depending on the selection of anode and cathode materials, the device will be self driven or else will require a battery to provide a driving force.
摘要:
A self-contained, gas-generating electrochemical cell has been invented. The cell contains an anode which is exposed to water or water containing material, a water permeable, ion-conducting separator between the anode from the cathode and a cathode composed of an electrochemically decomposable chemical compound which produces water in the presence of protons and electrons.An exemplary cell contains silver oxide as a principal component of the cathode, water as the principal anode component and a proton conducting membrane. The silver oxide reacts with protons electrically driven through said membrane and electrons from a power-source to form elemental silver and water. Deposition of elemental silver in the cathode compartment is advantageous inasmuch as it improves the electronic conductivity of the material in the cathode compartment. Water, in the anode, decomposes to protons and molecular oxygen while releasing electrons. It is this oxygen which acts as a pressurizing gas to perform some useful work, such as being the motive force to dispense fluids from a fluid-containing bladder to deliver said dispensed fluids to a particular site. The dispensed fluids may have some beneficial property such as medicinal, insecticidal, fragrant or other attributes.
摘要:
An electrochemical oxygen generating device employing oxygen-conducting metal oxide electrolyte, a non-porous silver or silver alloy containing electrode and an electrode undercoat comprising a ceramic oxide electronic conductor is disclosed.
摘要:
An electrochemical oxygen generating device employing oxygen-conducting metal oxide electrolyte and a silver or silver alloy containing non-porous electrode is disclosed.
摘要:
A method for preparing stable non-stoichiometric cathode material to provide cathodes useful in non-aqueous electrochemical cells having an active metal (e.g. lithium) anode. The method comprises reducing the non-stoichiometric cathode material (e.g. manganese dioxide) with the active metal or a precursor compound of said active metal to form a compound of the active metal and stoichiometric active cathode material.
摘要:
A method for preparing stable non-stoichiometric cathode material to provide cathodes useful in non-aqueous electrochemical cells having an active metal (eg. lithium) anode. The method comprises reducing the non-stoichiometric cathode material (eg. manganese dioxide) with the active metal or a precursor compound of said active metal to form a compound of the active metal and stoichiometric active cathode material.
摘要:
A solid electrolyte additive for high energy density solid state cells, comprising aluminum oxide treated with a polar covalently bonded alkali metal.
摘要:
An electrochemical cell having a cation-conductive ceramic membrane and an acidic anolyte. Generally, the cell includes a catholyte compartment and an anolyte compartment that are separated by a cation-conductive membrane. While the catholyte compartment houses a primary cathode, the anolyte compartment houses an anode and a secondary cathode. In some cases, a current is passed through the electrodes to cause the secondary cathode to evolve hydrogen gas. In other cases, a current is passed between the electrodes to cause the secondary cathode to evolve hydroxyl ions and hydrogen gas. In still other cases, hydrogen peroxide is channeled between the secondary cathode and the membrane to form hydroxyl ions. In yet other cases, the cell includes a diffusion membrane disposed between the secondary cathode and the anode. In each of the aforementioned cases, the cell functions to maintain the pH of a fluid contacting the membrane at an acceptably high level.
摘要:
A method that produces coupled radical products. The method involves obtaining a sodium salt of a carboxylic acid. The alkali metal salt is then used in an anolyte as part of an electrolytic cell. The electrolytic cell may include an alkali ion conducting membrane (such as a NaSICON membrane) that separates an anolyte compartment housing the anolyte from a catholyte compartment housing a catholyte. The anolyte includes a first solvent or mixture of solvents and a quantity of the sodium salt of the carboxylic acid. When the cell is operated, the alkali metal salt of the carboxylic acid decarboxylates and forms radicals. Such radicals are then bonded to other radicals, thereby producing a coupled radical product such as a hydrocarbon.
摘要:
An apparatus and method for applying a beneficial agent to the skin is disclosed in one embodiment of the invention as including first and second chemical reactants, each being compatible with the skin. The first and second chemical reactants react with one another to generate a beneficial agent and enhance the permeability of the skin (e.g., by generating heat). The beneficial agent may then be applied to the skin while the permeability of the skin is enhanced. In selected embodiments, the first chemical reactant includes one or more metals, or alloys thereof, that are compatible (i.e., not harmful) with the skin. Similarly, in selected embodiments, the second chemical reactant may include water. In certain embodiments, the beneficial agent generated by the first and second chemical reactants includes an antioxidant such as hydrogen.