Abstract:
An LCD panel including a first substrate, a second substrate disposed above the first substrate, a plurality of signal lines disposed on the first substrate, and a plurality of sub-pixel sets arranged between the first substrate and the second substrate. Each sub-pixel set includes a plurality of sub-pixels electrically connected to the signal lines, each sub-pixel set has a spacer disposed between the first substrate and the second substrate, and each spacer form a region in each corresponding sub-pixel set, wherein the area of the sub-pixel with the region is substantially greater than the area of other sub-pixels, and the effective display area of the sub-pixel with the region is substantially equal to the effective display area of other sub-pixels.
Abstract:
The present invention relates to a shift register having a plurality of stages electrically coupled to each other in series. Each stage includes a first and second TFT transistor. The first TFT transistor has a get electrically coupled to the output of the immediately prior stage, a drain electrically coupled to the boost point of the stage, and a source configured to receive one of the first and second control signals. The second TFT transistor has a get electrically coupled to the output of the immediately next stage, a drain and a source electrically coupled the drain and the source of the first transistor, respectively.
Abstract:
A transflective liquid crystal display having a plurality of pixels, each pixel having a plurality of color sub-pixels. Each sub-pixel comprises a reflective electrode, a transmissive electrode connected to a secondary reflective electrode. The transmissive electrode is associated with a color filter, while one only of the reflective electrode and the secondary reflective electrode is associated with a color filter. The transmissive electrode is associated with a first charge storage capacitance. The reflective electrode is associated with a second charge storage capacitance which is adjustable depending on the operating states of the liquid crystal display.
Abstract:
A display device having slim border-area architecture is disclosed. The display device includes a substrate, a plurality of data lines, a plurality of gate lines, a plurality of auxiliary gate lines and a driving module. The substrate includes a display area and a border area. The data lines, the gate lines and the auxiliary gate lines are disposed in the display area. The driving module is disposed in the border area. The gate lines are crossed with the data lines perpendicularly. The auxiliary gate lines are parallel with the data lines. Each auxiliary gate line is electrically connected to one corresponding gate line. The data and auxiliary gate lines are electrically connected to the driving module based on an interlace arrangement. Further disclosed is a driving method for delivering gate signals provided by the driving module to the gate lines via the auxiliary gate lines.
Abstract:
A liquid crystal display (LCD) panel including an active device array substrate, an opposite substrate and a liquid crystal layer is provided. The active device array substrate includes a substrate, a plurality of scan lines, a plurality of data lines, and a plurality of pixel units. The scan lines, the data lines and the pixel units are disposed on the substrate. Each of the pixel units is electrically connected to one of the scan lines and one of the data lines correspondingly and crosses over two sides of the corresponding scan line. The opposite substrate includes a plurality of alignment protrusions. The alignment protrusions are located over the scan lines. Besides, the liquid crystal layer is disposed between the opposite substrate and the active device array substrate. The above-mentioned liquid crystal display panel has higher aperture ratio.
Abstract:
A liquid crystal display (LCD) panel and a manufacturing method thereof are provided. The manufacturing method includes providing a panel including a first substrate having scan lines, data lines, an active device electrically connecting the scan and data lines, and a pixel electrode electrically connecting the active device, a second substrate having an opposite electrode, and a liquid crystal (LC) layer disposed between the first and the second substrates and having a monomer material. A first curing voltage and a second curing voltage are applied to the scan and data lines, respectively. The second curing voltage is thus transmitted to the pixel electrode. The first curing voltage is higher than an absolute value of the second curing voltage. The monomer material is polymerized to form a first polymer stabilized alignment (PSA) layer between the LC layer and the first substrate and a second PSA layer between the LC layer and the second substrate. The electrical field is then removed.
Abstract:
A multi-domain liquid crystal display (LCD) including an active device array substrate, an opposite substrate, an electric field shielding layer, and a liquid crystal layer is provided. The active device array substrate has a plurality of pixels, wherein each pixel has a pixel electrode. The opposite substrate has a common electrode disposed between the opposite substrate and the active device array substrate. The electric field shielding layer is disposed on a part of each pixel electrode. The liquid crystal layer is disposed between the active device array substrate and the opposite substrate. The liquid crystal layer corresponding to each pixel is divided into a low-voltage domain and a high-voltage domain having the same cell gap, wherein the position of the electric field shielding layer is corresponding to the position of the low-voltage domain. Color shift of the multi-domain LCD is improved effectively at oblique viewing angles.
Abstract:
A liquid crystal display panel is provided. The liquid crystal display panel includes an active device array substrate, an opposite substrate, a plurality of scan lines, a plurality of data patterns, a plurality of connecting patterns, a plurality of active devices, a plurality of transparent pixel electrodes, a plurality of common lines, at least one polymer layer, and a liquid crystal layer. The opposite substrate is disposed above the active device array substrate. The scan lines, the data patterns and the connecting patterns are disposed on the active device array substrate, and the data patterns and the connecting patterns form data lines via contact holes. The common lines are disposed between the transparent pixel electrodes and the data lines, and a part of each common line overlaps the corresponding data pattern. The polymer layer is disposed on at least one of the active device array substrate and the opposite substrate.
Abstract:
A single-gap transflective LCD panel having a voltage divider in each sub-pixel for reducing the voltage potential across part of the liquid crystal layer in the sub-pixel. In a normally-black LCD panel, the voltage divider is used to reduce the voltage potential across the liquid crystal layer in the reflection area. In a normally-white LCD panel, the voltage divider is used to reduce the voltage potential across the liquid crystal layer in the transmission area. The voltage divider comprises two poly-silicon resistor segments connected in series between a data line and a common line via one or more switching elements controlled by a gate line signal. With poly-silicon resistor segments being disposed in the reflection area below the reflective electrode, the optical quality of the upper electrode and the transmissive electrode is not affected by the voltage divider.
Abstract:
A driving method in a liquid crystal display comprises the steps of: (a) receiving a first signal in a first time period; (b) comparing the first signal with a predetermined signal; (c) outputting the predetermined signal when a value of the first signal being smaller than or equal to a value of the predetermined signal; (d) transforming the predetermined signal into a driving voltage to drive a pixel; and (e) receiving a second signal and generating an overdriving voltage according to the predetermined signal and the second signal to drive the pixel in a second time period.