Abstract:
A single-gap transflective LCD panel having a voltage divider in each sub-pixel for reducing the voltage potential across part of the liquid crystal layer in the sub-pixel. In a normally-black LCD panel, the voltage divider is used to reduce the voltage potential across the liquid crystal layer in the reflection area. In a normally-white LCD panel, the voltage divider is used to reduce the voltage potential across the liquid crystal layer in the transmission area. The voltage divider comprises two poly-silicon resistor segments connected in series between a data line and a common line via one or more switching elements controlled by a gate line signal. With poly-silicon resistor segments being disposed in the reflection area below the reflective electrode, the optical quality of the upper electrode and the transmissive electrode is not affected by the voltage divider.
Abstract:
A backlight module including a first light guide plate, a first light source, a second light guide plate, and a second light source. The first light guide plate includes a first side, a second side opposite to the first side, and a first surface with a micro-groove structure. The first light source is disposed on the first side of the first light guide plate. The second light guide plate is disposed on the first light guide plate, and includes a third side, a fourth side opposite to the third side, and a second surface with a micro-groove structure. The fourth side and the second side are located at the same side. The second light source is disposed on the fourth side of the second light guide plate.
Abstract:
A backlight module including a first light guide plate, a first light source, a second light guide plate, and a second light source. The first light guide plate includes a first side, a second side opposite to the first side, and a first surface with a micro-groove structure. The first light source is disposed on the first side of the first light guide plate. The second light guide plate is disposed on the first light guide plate, and includes a third side, a fourth side opposite to the third side, and a second surface with a micro-groove structure. The fourth side and the second side are located at the same side. The second light source is disposed on the fourth side of the second light guide plate.
Abstract:
A single-gap transflective LCD panel having a voltage divider in each sub-pixel for reducing the voltage potential across part of the liquid crystal layer in the sub-pixel. In a normally-black LCD panel, the voltage divider is used to reduce the voltage potential across the liquid crystal layer in the reflection area. In a normally-white LCD panel, the voltage divider is used to reduce the voltage potential across the liquid crystal layer in the transmission area. The voltage divider comprises two poly-silicon resistor segments connected in series between a data line and a common line via one or more switching elements controlled by a gate line signal. With poly-silicon resistor segments being disposed in the reflection area below the reflective electrode, the optical quality of the upper electrode and the transmissive electrode is not affected by the voltage divider.
Abstract:
An electrowetting display device includes an electrowetting display panel and an illumination unit. The electrowetting display panel includes two or more different optical color-converting liquid layers and a plurality of light-shielding liquid layers. The two or more different optical color-converting liquid layers are able to convert the light source generated by the illumination unit into light beams having two or more different colors of desired grey scales. The light-shielding liquid layers can be driven to change the transmittance of display regions so as to implement switch between transparent display mode, non-transparent display mode and semi-transparent display mode.
Abstract:
A transflective display. The transflective display includes a first substrate, a first electrode formed thereon, a second substrate having a reflective area and a transmissive area opposite to the first substrate, a second electrode formed on the second substrate opposite to the first electrode, and a liquid crystal layer including a plurality of liquid crystal molecules and polymers disposed between the first electrode and the second electrode. The invention also provides a method of fabricating the transflective display.
Abstract:
A liquid crystal display includes a first switch for outputting a first electrode voltage according to a first data signal and a first gate signal, a second switch for outputting a second electrode voltage according to a second data signal and the first gate signal, a liquid crystal capacitor for controlling liquid-crystal transmittance according to the difference between the first and second electrode voltages, a first storage capacitor for storing the first electrode voltage, a third switch, a second storage capacitor for storing the second electrode voltage, and a fourth switch. The third switch controls the operation of furnishing a first common voltage to the first storage capacitor according to a second gate signal, for adjusting the first electrode voltage. The fourth switch controls the operation of furnishing a second common voltage to the second storage capacitor according to the second gate signal, for adjusting the second electrode voltage.
Abstract:
This invention in one aspect relates to a pixel structure. In one embodiment, the pixel structure includes a scan line formed on a substrate and a data line formed over the substrate defining a pixel area, a switch formed inside the pixel area on the substrate, a shielding electrode having a first portion and a second portion extending from the first portion, and formed over the scan line, the data line and the switch, where the first portion is overlapped with the switch and the second portion is overlapped with the data line, and a pixel electrode having a first portion and a second portion extending from the first portion, and formed over the shielding electrode in the pixel area, where the first portion is overlapped with the first portion of the shielding electrode so as to define a storage capacitor therebetween and the second portion has no overlapping with the second portion of the shielding electrode.
Abstract:
An active matrix substrate including a substrate, a plurality of scan lines, a plurality of data lines and a plurality of sub-pixels is provided. The scan lines and the data lines are disposed on the substrate, and define a plurality of sub-pixel regions distributed in a delta arrangement. The sub-pixels corresponding to the sub-pixel regions are disposed on the substrate. The sub-pixels are electrically connected with corresponding scan lines and corresponding data lines. Between two sub-pixel regions corresponding to any two adjacent sub-pixels at a same side of one scan line, there are two data lines. Each sub-pixel includes an active device and a pixel electrode. The active device is electrically connected with a corresponding scan line and a corresponding data line. The pixel electrode is electrically connected with the active device, and extends from the sub-pixel region corresponding to the sub-pixel to a position over the data line.
Abstract:
A liquid crystal display including an active device array substrate, an opposite substrate disposed above the active device array substrate and a liquid crystal layer disposed between the active device array substrate and the opposite substrate is provided. The active device array substrate has a plurality of signal lines, a plurality of active devices electrically connected with corresponding signal lines, a plurality of pixel electrodes electrically connected with corresponding active devices, and an auxiliary electrode. The auxiliary electrode is disposed between the pixel electrodes. Besides, the opposite substrate has a common electrode. The voltage difference applied between the common electrode and the pixel electrode is smaller than that applied between the auxiliary electrode and the pixel electrode. Additionally, a driving method for the above-mentioned liquid crystal display is also provided.