Abstract:
The present invention relates to a method and apparatus for processing a video signal, which can increase the accuracy of the motion vector prediction through motion vector scaling which takes a difference in the temporal distance between reference pictures into consideration. To this end, the present invention provides a video signal processing method and a video signal processing apparatus using the same, and the method comprises the steps of: scaling at least one neighboring partition motion vector for a motion vector prediction of the current partition; scaling the neighboring partition motion vector, which has been selected, when the reference picture of the neighboring partition motion vector is different from the reference picture of the current partition; acquiring a motion vector prediction value of the current partition using the scaled motion vector; and acquiring a motion vector of the current partition using the motion vector prediction value.
Abstract:
The present invention relates to a method and apparatus for processing a video signal, which can increase the accuracy of the motion vector prediction through motion vector scaling which takes a difference in the temporal distance between reference pictures into consideration. To this end, the present invention provides a video signal processing method and a video signal processing apparatus using the same, and the method comprises the steps of: scaling at least one neighboring partition motion vector for a motion vector prediction of the current partition; scaling the neighboring partition motion vector, which has been selected, when the reference picture of the neighboring partition motion vector is different from the reference picture of the current partition; acquiring a motion vector prediction value of the current partition using the scaled motion vector; and acquiring a motion vector of the current partition using the motion vector prediction value.
Abstract:
The present invention discloses a method and apparatus for encoding or decoding a video signal. The method for processing a video signal according to the present invention uses a merging mode in which prediction information on a neighbor unit is used instead of transmitting prediction information on the present unit, so as to improve coding efficiency. In this case, the number of available candidate units for merging among the units in a predetermined position is determined, and information for the merging mode is acquired on the basis of the number of the available candidate units for merging. The unit to be merged is determined using the information for the merging mode, and prediction information on the unit to be merged is acquired. The prediction value for the present unit is acquired using the prediction information on the unit to be merged, and the present unit is restored using the acquired prediction value.
Abstract:
The present invention relates to an image information encoding and decoding method and a device for same. One embodiment of an image information encoding method according to the present invention, as an image information encoding method according to another embodiment of the present invention, includes the steps of: generating a restore block; applying a deblocking filter on the restore block; applying a Sample Adaptive Offset (SAO) on the restore block having the deblocking filter applied thereon; and transmitting information on the SAO application. During the applying of the SAO, the SAO is applied to chroma pixels, and during the transmitting of the information, in addition to information on whether the SAO is applied on the chroma pixels, at least one of area information, division information on the SAO coverage area, SAO type information, and SAO offset information is transmitted.
Abstract:
The present invention relates to a method for encoding and decoding image information and to an apparatus using same, and the method for encoding the image information, according to the present invention, comprises the steps of: generating a recovery block; applying a deblocking filter to the recovery block; applying a sample adaptive offset (SAO) to the recovery block to which the deblocking filter is applied; and transmitting the image information including information on the SAO which is applied, wherein in the step of transmitting, information for specifying bands that cover a scope of a pixel value, to which a band off set is applied, is transmitted when the band offset is applied during the step of applying the SAO.
Abstract:
The present invention relates to a method and an apparatus for decoding an image, for decoding a bitstream including a plurality of layers. The image decoding method may comprise: a step of receiving and identifying dependency information indicating whether an upper layer is coded by the same coding method as a lower layer; and a step of recovering the image of the upper layer based on the identified dependency information. Thus, information indicating whether the information of the reference layer which the current layer refers to is encoded data or recovered value can be identified.
Abstract:
The method for deriving a temporal motion vector predictor according to the present invention comprises the steps of: selecting a reference picture for a current block; deciding a predictor block corresponding to a predetermined storage unit block, as a reference prediction unit for the current block, in the reference picture; and deriving the temporal motion vector predictor from motion information of the decided reference prediction unit. The present invention enhances image compression efficiency.
Abstract:
The enhanced 3D audio/video processing apparatus according to one embodiment of the present invention may comprise: a three-dimensional (3D) content generating unit for generating 3D content including video content and analog content; a depth information generating unit for generating depth information for the video frames constituting the video content; and a signal generating unit for generating a 3D enhanced signal including the generated 3D content and the depth information. Further, the enhanced 3D audio/video processing apparatus according to another embodiment of the present invention may comprise: a signal processing unit for processing the 3D enhanced signal including the 3D content including the video content and the audio content: a depth information extraction unit for acquiring the depth information of the video frames constituting the video content from the processed 3D enhanced signal; a 3D audio effect generating unit for generating 3D audio effect based on the acquired depth information; and a 3D audio content generating unit for generating 3D audio content by applying the generated 3D audio effect.
Abstract:
The present invention relates to a video encoding method, to a video decoding method and to an apparatus using same. A video encoding method according to the present invention comprises: a step of encoding substreams which are rows of largest coding units (LCUs) in parallel with each other; and a step of transmitting a bit stream including the encoded substreams. The number of the substreams may be the same as the number of entry points.
Abstract:
The present invention relates to an intra-prediction method and to an encoder and decoder using same. The intra-prediction method according to one embodiment of the present invention comprises the steps of deriving a prediction mode of a current block; and generating a prediction block with respect to the current block on the basis of the prediction mode of the current block. When the prediction mode of the current block is an intra-angular prediction mode, values of boundary samples from among left boundary samples and upper boundary samples of the prediction block, which are not positioned in a prediction direction of the intra-angular prediction mode, are derived on the basis of reference samples positioned in the prediction direction of the intra-angular prediction mode, and on the basis of adjacent reference samples.