Abstract:
One disclosure of the present specification provides a method for performing a proximity service (ProSe). The method may be performed by a user equipment (UE) and comprise: performing, by the UE configured with a primary cell (Pcell) and a secondary cell (Scell), a switching between the ProSe and a cellular service with at least one of the Pcell and the Scell; transceiving a ProSe discovery signal with at least one or more adjacent UEs after performing a switching from the cellular service to the ProSe service; and transceiving a signal with the at least one of the Pcell and the Scell after performing a switching from the ProSe service to the cellular service. Here, the UE is allowed an interruption of up to one subframe that is N subframes before and after an uplink (UL) subframe configured for transmitting the ProSe discovery signal.
Abstract:
According to one embodiment of the present invention, provided is a wireless equipment for transmitting an uplink signal through a reduced transmission resource block (RB) in a wireless communication system. The wireless equipment can comprise: a processor; and a radio frequency (RF) unit for transmitting an uplink signal under control of the processor. When the RF unit is set to a predetermined channel bandwidth and a predetermined frequency range and must satisfy a predetermined maximum allowed value of spurious radiation to protect another frequency range, the uplink signal can be transmitted according to a predetermined maximum number of RBs instead of a total number of RBs for the predetermined channel bandwidth.
Abstract:
A method and a base station for transmitting information for cell measurements, and a method and a user equipment for performing cell measurements are discussed. The method for transmitting information for cell measurements according to an embodiment includes transmitting, by the base station, information indicating a first time domain measurement resource restriction pattern for measurements of a first cell. The first time domain measurement resource restriction pattern indicates which subframe among subframes corresponding to the first time domain measurement resource restriction pattern is used for the measurements of the first cell. The first time domain measurement resource restriction pattern is configured such that a subset of non-almost blank subframes in an almost blank subframe pattern configured in the first cell is used for the measurements of the first cell. The almost blank subframe pattern indicates which subframes are configured as almost blank subframes or as the non-almost blank subframes.
Abstract:
A method, performed by a user equipment (UE), is provided for determining uplink transmission power. A radio frequency (RF) unit is configured to use for an uplink transmission a frequency range of 1980 MHz through 2010 MHz or 1920 MHz through 2010 MHz. The UE receives a value of an additional maximum power reduction (A-MPR) from a serving base station (BS) adjacent to a neighboring BS for serving another UE using for an uplink transmission a frequency range of 2010 MHz through 2025 MHz. An uplink signal is transmitted at an uplink transmission power calculated by using the value of the A-MPR. The value of the A-MPR is 11 dB or 15 dB.
Abstract:
A method of reducing transmission power. The method according to one embodiment includes calculating a maximum power reduction (MPR) on a maximum output power for transmission with non-contiguous resource allocation in a single component carrier; and transmitting a signal. The MPR is calculated differently depending on a ratio A which is a ratio of a number of simultaneously transmitted resource blocks in a channel bandwidth (NRB_alloc) to a number of aggregated resource blocks in a fully allocated aggregated channel bandwidth (NRB_agg). The MPR is calculated using a first equation when the ratio A is greater than 0 and less than or equal to 0.33. The MPR is calculated using a second equation when the ratio A is greater than 0.33 and less than or equal to 0.77. The MPR is calculated using a third equation when the ratio A is greater than 0.77 and less than or equal to 1.
Abstract:
One embodiment of the present specification relates to a method for reducing transmission power. The method for reducing transmission power can comprise the steps of: determining whether set carrier aggregation (CA) corresponds to intra-band non-contiguous CA when the CA is set; determining transmission power by applying maximum power reduction (MPR) when the set CA corresponds to intra-band non-contiguous CA; and reducing power by applying additional MPR to the determined transmission power in order to protect adjacent bands when non-contiguous carriers belong to a specific band.
Abstract:
One embodiment of the present specification discloses a receiving method. The receiving method comprises the steps of: cancelling interference caused by a cell-specific reference signal (CRS) of a neighboring cell from a bit string received from a serving cell; determining weight to be applied to the bit string; applying the determined weight to the bit string; and decoding the bit string to which the weight is applied. In the step of determining the weight, it is possible to determine the weight to be applied depending on whether or not CRSs collide with each other between the serving cell and the neighboring cell that causes the interference.
Abstract:
The present invention relates to a method of providing, by a UE served in a small-scale cell, information about surrounding UEs in a wireless communication system in which a macro cell and the small-scale cell coexist. The method can include the steps of: carrying out a handover from the macro cell to the small-scale cell; after completion of the handover, overhearing a signal transmitted by the UE; measuring signal intensities of the surrounding UEs; and, if the signal intensities meet predefined conditions, delivering information about the surrounding UEs to the small-scale cell.
Abstract:
A method of reducing transmission power. The method is performed by a user equipment and includes calculating a maximum power reduction (MPR) on maximum output power for transmission with non-contiguous resource allocation in a single component carrier; and transmitting a signal based on the MPR. The MPR is determined according to the following equation: MPR=CEIL {MA, 0.5}, the CEIL being a function of rounding up by 0.5. The MA is determined according to the following equations: MA=(8.0−10.12*A) when 0
Abstract:
Disclosed in the present invention are a method for estimating an almost blank subframe (ABS) zone in a wireless access system in which a macro cell and a pico cell coexist, and an apparatus for same. More specifically, the present invention comprises the steps of measuring reference signal received power (RSRP) by using a cell-specific reference signal which is inserted into a subframe of the macro cell, and determining whether the format of the subframe is a multicast broadcast single frequency network (MBSFN) ABS by comparing an RSRP measurement value from a zeroth orthogonal frequency division multiplexing (OFDM) symbol of the subframe, and an RSRP measurement value from a symbol that is not the zeroth OFDM symbol.