摘要:
A microprocessor includes a control register that stores a control value that affects operation of the microprocessor. An instruction set architecture includes a conditional branch instruction that specifies a branch condition based on the control value stored in the control register, and a serializing instruction that updates the control value in the control register. The microprocessor completes all modifications to flags, registers, and memory by instructions previous to the serializing instruction and to drain all buffered writes to memory before it fetches and executes the next instruction after the serializing instruction. Execution units update the control value in the control register in response to the serializing instruction. A fetch unit fetches, decodes, and unconditionally correctly resolves and retires the conditional branch instruction based on the control value stored in the control register rather than dispatching the conditional branch instruction to the execution units to be resolved.
摘要:
A microprocessor includes a register that stores a state and a fetch unit that fetches instructions of a program. The program includes a first instruction followed non-immediately by a second instruction. The first instruction instructs the microprocessor to update the state in the register. The second instruction is a conditional branch instruction that specifies a branch condition based on the register state. The fetch unit dispatches the first instruction for execution but refrains from dispatching the second instruction for execution. Execution units receive the first instruction from the fetch unit and responsively update the register state. The fetch unit non-selectively correctly resolves the conditional branch instruction based on the register state when the execution units have updated the register state. The fetch unit also non-selectively refrains from sending the conditional branch instruction to the execution units to be resolved regardless of whether the execution units have updated the register state.
摘要:
An apparatus providing for a secure execution environment, including a microprocessor and a secure non-volatile memory. The microprocessor executes non-secure application programs and a secure application program, where the non-secure application programs are accessed from a system memory via a system bus. The microprocessor has secure execution mode logic that is configured to provide for a secure execution mode within the microprocessor for execution of the secure application program. The secure execution mode logic records the state of the microprocessor in a non-volatile indicator register upon entry into the secure execution mode and upon exit from the secure execution mode. The secure non-volatile memory is coupled to the microprocessor via a private bus and is configured to store the secure application program. Transactions over the private bus between the microprocessor and the secure non-volatile memory are isolated from the system bus and corresponding system bus resources within the microprocessor.
摘要:
An apparatus providing for a secure execution environment. The apparatus includes a microprocessor that is configured to execute non-secure application programs and a secure application program, where the non-secure application programs are accessed from a system memory via a system bus. The microprocessor has a non-secure memory and a secure volatile memory. The non-secure memory is configured to store portions of the non-secure application programs for execution by the microprocessor, where the non-secure memory is observable and accessible by the non-secure application programs and by system bus resources within the microprocessor. The secure volatile memory is configured to store the secure application program for execution by the microprocessor, where the secure volatile memory is isolated from the non-secure application programs and the system bus resources within the microprocessor.
摘要:
A microprocessor includes a private RAM (PRAM), for use by microcode, which is non-user-accessible and within its own distinct address space from the system memory address space. The PRAM is denser and slower than user-accessible registers of the microprocessor macroarchitecture, thereby enabling it to provide significantly more storage for microcode. The microinstruction set includes a microinstruction for loading data from the PRAM into the user-accessible registers, and a microinstruction for storing data from user-accessible registers to the PRAM. The microcode may also use the two microinstructions to load/store between the PRAM and non-user-accessible registers of the microarchitecture. Examples of PRAM uses include: computational temporary storage area; storage of x86 VMX VMCS in response to VMREAD and VMWRITE macroinstructions; instantiation of non-user-accessible storage, such as the x86 SMBASE register; and instantiation of x86 MSRs that tolerate the additional access latency of the PRAM, such as the IA32_SYSENTER_CS MSR.
摘要:
A microprocessor apparatus and method are provided, for selectively controlling write back of a result. The apparatus includes translation logic and extended execution logic. The translation logic translates an extended instruction into corresponding micro instructions. The extended instruction has an extended prefix and an extended prefix tag. The extended prefix precludes write back of the result, where the result is that which is produced by executing an operation prescribed by said extended instruction, and wherein the result would otherwise be written back into a destination register. The extended prefix tag indicates the extended prefix, where the extended prefix tag is an otherwise architecturally specified opcode within an instruction set for a microprocessor. The extended execution logic is coupled to the translation logic. The extended execution logic receives the corresponding micro instructions, and executes the operation to generate the result, and precludes write back of the result.
摘要:
A microprocessor that includes a random number generator (RNG) and an instruction for storing random data bytes generated by the generator. The RNG includes multiple buffers for buffering the random bytes and counters associated with each buffer for keeping a count of the number of bytes in each buffer. The instruction specifies a destination for the bytes to be stored to. In one embodiment, the number of bytes written to memory is variable and is the number of bytes available when the instruction is executed; in another, the instruction specifies the number. If variable, the instruction atomically stores a count specifying the number of valid bytes actually stored. In one embodiment the destination is a location in system memory. The count may be stored to memory with the bytes; or the count may be stored to a user-visible register. An x86 REP prefix may be used.
摘要:
An apparatus and method are provided for extending a microprocessor instruction set to allow for selective suppression of store checking at the instruction level. The apparatus includes fetch logic, and translation logic. The fetch logic receives an extended instruction. The extended instruction has an extended prefix and an extended prefix tag. The extended prefix specifies that store checking be suppressed for the extended instruction. The extended prefix tag is an otherwise architectural opcode within an existing instruction set. The fetch logic precludes store checking for pending store events associated with the extended instruction. The translation logic is coupled to the fetch logic. The translation logic translates the extended instruction into a micro instruction sequence that sequence directs the microprocessor to exclude store checking during execution of a prescribed operation.
摘要:
A microprocessor with multiple random bit generators is disclosed. The multiple random bit generators each generate a stream of random bits. One of the streams of random bits is selected to be used to accumulate into random bytes for provision to application programs. Which of the multiple random bit generator random bit streams is selected is determined by a selection value stored in a control register of the microprocessor. The selection value is programmable by an instruction executed by the microprocessor.
摘要:
A method and apparatus are provided for storing a flags register in a processor. In response to a macro instruction directing the store operation, such as a push flags macro instruction, a mask is generated using privilege level information (i.e., current operating privilege level) to specify those bits of the flags register that can be stored. The mask is then ANDed with contents of the flags register to yield a result and the result is stored on a stack in memory.