摘要:
A microprocessor processes conditional non-branch instructions that specify a condition and instruct the microprocessor to perform an operation if the condition is satisfied and otherwise to not perform the operation. A predictor provides a prediction about a conditional non-branch instruction. An instruction translator translates the conditional non-branch instruction into a no-operation microinstruction when the prediction predicts the condition will not be satisfied, and into a set of one or more microinstructions to unconditionally perform the operation when the prediction predicts the condition will be satisfied. An execution pipeline executes the no-operation microinstruction or the set of microinstructions. The predictor translates into a second set of one or more microinstructions to conditionally perform the operation when the prediction does not make a prediction. In the case of a misprediction, the translator re-translates the conditional non-branch instruction into the second set of microinstructions.
摘要:
A microprocessor capable of operating as both an x86 ISA and an ARM ISA microprocessor includes first, second, and third storage that stores x86 ISA-specific, ARM ISA-specific, and non-ISA-specific state, respectively. When reset, the microprocessor initializes the first storage to default values specified by the x86 ISA, initializes the second storage to default values specified by the ARM ISA, initializes the third storage to predetermined values, and begins fetching instructions of a first ISA. The first ISA is the x86 ISA or the ARM ISA and a second ISA is the other ISA. The microprocessor updates the third storage in response to the first ISA instructions. In response to a subsequent one of the first ISA instructions that instructs the microprocessor to reset to the second ISA, the microprocessor refrains from modifying the non-ISA-specific state stored in the third storage and begins fetching instructions of the second ISA.
摘要:
An ISA-defined instruction includes an immediate field having a first and second portions specifying first and second values, which instructs the microprocessor to perform an operation using a constant value as one of its source operands. The constant value is the first value rotated/shifted by a number of bits based on the second value. An instruction translator translates the instruction into one or more microinstructions. An execution pipeline executes the microinstructions generated by the instruction translator. The instruction translator, rather than the execution pipeline, generates the constant value for the execution pipeline as a source operand of at least one of the microinstructions for execution by the execution pipeline. Alternatively, if the immediate field value is not within a predetermined subset of values known by the instruction translator, the instruction translator generates, rather than the constant, a second microinstruction for execution by the execution pipeline to generate the constant.
摘要:
A microprocessor having performs an architectural instruction that instructs it to perform an operation on first and second source operands to generate a result and to write the result to a destination register only if its architectural condition flags satisfy a condition specified in the architectural instruction. A hardware instruction translator translates the instruction into first and second microinstructions. To execute the first microinstruction, an execution pipeline performs the operation on the source operands to generate the result. To execute the second microinstruction, it writes the destination register with the result generated by the first microinstruction if the architectural condition flags satisfy the condition, and writes the destination register with the current value of the destination register if the architectural condition flags do not satisfy the condition.
摘要:
An out-of-order execution microprocessor for reducing the likelihood of having to replay a load instruction due to a store collision. The microprocessor includes a queue of entries, each entry configured to hold information that identifies sources of a store instruction used to compute its store address and to hold a dependency that identifies an instruction upon which the store instruction depends for its data. A register alias table (RAT), coupled to the queue of entries, is configured to encounter instructions in program order and to generate dependencies used to determine when the instructions may execute out of program order. In response to encountering a load instruction the RAT determines whether sources of the load instruction used to compute its load address match the sources of the store instruction in an entry of the queue, and if so, causes the load instruction to share the dependency of the matching store instruction.
摘要:
An architectural instruction instructs a microprocessor to perform an operation on first and second source operands to generate a result and to write the result to a destination register only if architectural condition flags satisfy a condition specified in the architectural instruction. A hardware instruction translator translates the architectural instruction into first and second microinstructions. To execute the first microinstruction, an execution pipeline performs the operation on the source operands to generate the result, determines whether the architectural condition flags satisfy the condition, and updates a non-architectural indicator to indicate whether the architectural condition flags satisfy the condition. To execute the first microinstruction, if the non-architectural indicator updated by the first microinstruction indicates the architectural condition flags satisfy the condition, it updates the destination register with the result; otherwise, it updates the destination register with the current value of the destination register.
摘要:
A microprocessor includes a hardware instruction translator that translates an architectural instruction into first and second microinstructions. To execute the first microinstruction, an execution pipeline performs the shift operation on the first source operand to generate the first result and a carry flag value and updates a non-architectural carry flag with the generated carry flag value. To execute the second microinstruction, it performs the second operation on the first result and the second operand to generate the second result and new condition flag values based on the second result. If a architectural condition flags satisfy the condition, it updates the architectural carry flag with the non-architectural carry flag value and updates at least one of the other architectural condition flags with the corresponding generated new condition flag values; otherwise, it updates the architectural condition flags with the current value of the architectural condition flags.
摘要:
A microprocessor includes a hardware instruction translator that translates x86 ISA and ARM ISA machine language program instructions into microinstructions, which are encoded in a distinct manner from the x86 and ARM instructions. An execution pipeline executes the microinstructions to generate x86/ARM-defined results. The microinstructions are distinct from the results generated by the execution of the microinstructions by the execution pipeline. The translator directly provides the microinstructions to the execution pipeline for execution. Each time the microprocessor performs one of the x86 ISA and ARM ISA instructions, the translator translates it into the microinstructions. An indicator indicates either x86 or ARM as a boot ISA. After reset, the microprocessor initializes its architectural state, fetches its first instructions from a reset address, and translates them all as defined by the boot ISA. An instruction cache caches the x86 and ARM instructions and provides them to the translator.
摘要:
An apparatus detects a load-store collision within a microprocessor between a load operation and an older store operation each of which accesses data in the same cache line. Load and store byte masks specify which bytes contain the data specified by the load and store operation within a word of the cache line in which the load and data begins, respectively. Load and store word masks specify which words contain the data specified by the load and store operations within the cache line, respectively. Combinatorial logic uses the load and store byte masks to detect the load-store collision if the data specified by the load and store operations begin in the same cache line word, and uses the load and store word masks to detect the load-store collision if the data specified by the load and store operations do not begin in the same cache line word.
摘要:
A microprocessor configured to access an external memory includes a first-level cache, a second-level cache, and a bus interface unit (BIU) configured to interface the first-level and second-level caches to a bus used to access the external memory. The BIU is configured to prioritize requests from the first-level cache above requests from the second-level cache. The second-level cache is configured to generate a first request to the BIU to fetch a cache line from the external memory. The second-level cache is also configured to detect that the first-level cache has subsequently generated a second request to the second-level cache for the same cache line. The second-level cache is also configured to request the BIU to refrain from performing a transaction on the bus to fulfill the first request if the BIU has not yet been granted ownership of the bus to fulfill the first request.