Abstract:
A radar system and method for determining the range and, optionally, the azimuth of a target, while maintaining a high transmitting duty factor is provided. A waveform generator is connected to an antenna aperture by a transmit-receive switch, and the waveform is transmitted for more than half of the period of time of the sum of the transmission period and the receiving period. For a frequency-modulated continuous-wave waveform (FMCW), the receiver may be turned on for short intervals at a rate which is at least the Nyquist rate for the signal received from at target. A monopulse or frequency-scanned antenna may be used to determine azimuth as well as range.
Abstract:
Disclosed are embodiments of apparatus, methods, and systems for inflatable curtain venting. In one embodiment, an inflatable curtain airbag is tested using a 50th-percentile dummy. The inflatable curtain airbag comprises a vent opening positioned such that during the crash test, the head of the 50th-percentile dummy strikes the airbag at the location of the vent such that the exit of inflation gas through the vent is at least partially blocked. The same inflatable curtain airbag may then be used in a test involving a 5th-percentile dummy, in which case the head of the 5th-percentile dummy would not strike the airbag so as to block the vent, thereby allowing for venting of the airbag.
Abstract:
A restraint system that evaluates factors such the type of collision an automotive vehicle is experiencing and then, based on that evaluation, deploys a knee airbag and/or a head/torso airbag. A knee airbag is also disclosed with an upper portion and a lower portion.
Abstract:
Various embodiments of the invention provide a device for protecting the cushion material of an inflatable element from inflator gases and particulate matter. The device along with an inflator and an airbag may be placed in a housing. The device includes a first strip and a second strip. Each of the first strip and second strip includes at least one opening. Each of the openings are surrounded by a plurality of holes. The second strip may be placed above the first strip in a suitable position.
Abstract:
A new type of airbag inflator that may be used in an airbag system is disclosed. The inflator will generally include a housing and two initiators. Accordingly, the inflator is a “dual-stage” inflator. The two stages are disposed within the housing. The second initiator is disposed within a second stage generant cup. A cap is also used to engage the second stage cup. The cap maintains seated engagement with the second stage cup, even during deployment of the second stage. The second stage will also include one or more perforations, which constitute openings through which gas may flow. When the second initiator is in the unactuated state, these perforations will be isolated from the generant by the cap. Actuation of the second initiator unseals the one or more perforations but does not unseat the cap from the cup, due to constraints put in place to prevent such unseating.
Abstract:
An airbag cushion is disclosed for use in automotive protective systems. The airbag cushion includes at least one closeable flap vent for re-directing gas out of the cushion when an obstruction is encountered. The airbag cushion also includes a tether for controlling the closeable flap vent.
Abstract:
A new type of inflator that may be used to inflate an airbag is disclosed. The inflator will have a longitudinal axis, a first chamber, and a filter. The filter may be positioned outside of the first chamber. A first quantity of gas generant is positioned within the first chamber. A first strainer having a plurality of gas flow holes is also positioned within the first chamber. The first quantity of gas generant is located exterior of the strainer. Upon combustion of the first quantity of gas generant produces a first quantity of gas that flows towards the longitudinal axis while passing through the gas flow holes, enters the filter, and then flows away from the longitudinal axis while passing through the filter.
Abstract:
An airbag emblem may be backlit or illuminated to provide the emblem with greater visual appeal. In order to accomplish this illumination, an illumination source is used. This illumination source may be electroluminescent foil. The emblem includes colors that are added or inserted onto the emblem. These colors are translucent so that they may be illuminated by the illumination source. This emblem may be placed as part of an airbag cover on a steering wheel.
Abstract:
A stored gas inflator having a chamber. The chamber houses a quantity of stored gas. The chamber is sealed by a burst disk. A frangible support is also added. The frangible support is designed to support the burst disk. The frangible support breaks during deployment of the inflator. The inflator is further constructed such that when the temperature of the inflator exceeds a threshold level, the gas is vented out of the chamber through the frangible member.
Abstract:
An inflator for an airbag is provided. The inflator can include a housing that has a first end and a second end. The inflator can also include a gas generant disposed in the housing that defines a bore. The inflator can include an igniter coupled to the first end of the housing that can detonate the gas generant upon receipt of a signal. The inflator can further include a temporary closure coupled to the second end of the housing that can be opened to provide an exit out of the housing. The ignition of the igniter can generate a shockwave that passes through the bore to open the temporary closure.