Abstract:
The present invention relates to IR-sensitive compositions suitable for the manufacture of printing plates developable on-press. The IR-sensitive compositions comprise a first polymeric binder which does not comprise acidic groups having a pKa value≦8; a second polymeric binder comprising polyether groups; an initiator system; and a free radical polymerizable system comprising at least one member selected from unsaturated free radical polymerizable monomers, free radical polymerizable oligomers and polymers containing C═C bonds in the back bone and/or in the side chain groups. The initiator system includes (i) at least one compound capable of absorbing IR radiation; (ii) at least one compound capable of producing radicals selected from polyhaloalkyl-substituted compounds; and (iii) at least one polycarboxylic acid of formula R4—(CR5R6)r—Y—CH2COOH, wherein oxi
Abstract:
The present invention provides a method of coating a coating solution comprising: providing a web; providing a coating solution; coating the coating solution on at least one surface of the web; and drying the coating solution to form a coated layer, wherein a temperature of the web is maintained at 35° C. or more during coating. According to the coating method, a multi-layered planographic printing plate can be manufactured at low energy cost and running cost.
Abstract:
The present invention provides an infrared-sensitive composition including an initiator system comprising: (a) an infrared absorbing compound; (b) a radical producing compound; and (c) a carboxylic acid co-initiator compound. In some embodiments of the invention, the co-initiator is a monocarboxylic acid. In other embodiments of the present invention, the co-initiator is a polycarboxylic acid. The infrared-sensitive composition further includes a polymeric binder and a free radical polymerizable system consisting of at least one member selected from unsaturated free radical polymerizable monomers, oligomers which are free radical polymerizable, and polymers containing CnullC bonds in the back bone and/or in the side chain groups. In some embodiments of the present invention, the acid number of the polymeric binder is 70 mg KOH/g or less. The present invention further provides a printing plate precursor, a process for preparing the printing plate and a method of producing an image.
Abstract:
A method for preparing a lithographic printing plate which comprises imagewise exposing to light a presensitized plate useful for making a lithographic printing plate having an intermediate layer and a photosensitive layer on an aluminum substrate in this order and developing the imagewise exposed plate with a developer, wherein said intermediate layer comprises a polymer compound comprising at least a structure unit having an acid group and a structure unit having an onium group and said developer comprises an inorganic alkali salt and a nonionic surfactant having polyoxyalkylene ether group and pH of the developer ranges from 11.0 to 12.7. The method provides a lithographic printing plate, which shows good contrast between an image area and non-image area, no background contamination during printing, good stability with time and good printing durability.
Abstract:
A lithographic printing plate precursor is disclosed, which comprises an image-forming layer which contains a hydrophilic resin, an acid precursor and at least one component selected from fine particles containing a compound having a vinyloxy group and microcapsules containing a compound having a vinyloxy group, on a hydrophilic support, which can be development processed on a printing machine.
Abstract:
A lithographic printing plate precursor comprising a hydrophilic support having provided thereon an image-forming layer containing a radical initiator, an infrared absorbing dye, and at least one component selected from fine particles containing a radical polymerizable compound having the specific structure and microcapsules encapsulating a radical polymerizable compound having the specific structure.
Abstract:
A method of making a lithographic printing master is disclosed which comprises the steps of providing an imaging material which comprises a lithographic base having a hydrophilic surface and a non-ablative image-recording layer which is removable in a single-fluid ink or can be rendered removable in a single-fluid ink by exposure to heat or light; image-wise exposing the image-recording layer to heat or light; processing the material by supplying to the image-recording layer a single-fluid ink which is an emulsion of an ink phase and a non-aqueous polar phase. The use of single-fluid ink as processing liquid is a simple, convenient method for the on-press processing of the above defined material.
Abstract:
Thermally imageable elements useful as lithographic printing plate precursors are disclosed. The elements comprise a top layer over a support. The top layer comprises a phenolic resin and an ionic liquid.
Abstract:
A lithographic printing plate precursor comprising a hydrophilic support having provided thereon a first layer comprising a first resin that is water-insoluble and alkali-soluble and a second layer comprising a second resin that is water-insoluble and alkali-soluble in this order and a light-heat converting agent incorporated into at least one layer of the first layer and second layer, which further comprises at least one organic solvent selected from organic solvents having a boiling point not less than 150null C. and a dipole moment not less than 3.50 debye in an amount of from 0.5 to 5% by weight based on the total dry weight of the first layer and second layer.
Abstract:
A lithographic printing plate precursor of the present invention comprises a water-resistant support, a hydrophilic layer and an image-forming layer, in this order, said hydrophilic layer comprising a fine particulate hydrophobicizing precursor and a hydrophilic binder polymer, and said image forming layer comprising a light-heat converting substance and a microcapsule encapsulating a hydrophobic substance, wherein the hydrophilic binder polymer is a composite material of a hydrophilic organic polymer and a polymer having a group including: at least one atom selected from a metal atom and semimetal atom; and an oxygen atom connecting with the at least one atom selected from a metal atom and semimetal atom.