Abstract:
An front plate structure for a plasma display panel is described. In accordance with the present invention, a protruding space pad structure is formed on the dielectric layer or protective layer of the front plate. The space pad is used to form the height difference on the surface of the front plate, about 3 nullm to 15 nullm. The height difference forms gas channels between the front plate and the discharge region to improve the performance of the vacuuming and refilling gas steps.
Abstract:
A PDP having a novel cell structure that is superior in light emission efficiency is provided. A conductive film to be display electrodes X and Y is formed on side portions of a wall so that a main surface that contributes to discharge in the display electrode X is disposed so as to be opposed to a main surface of the neighboring display electrode Y via a gas space. A power supplying portion straddling plural cells in the display electrodes X and Y is provided on the upper surface of the wall. The display electrodes X and Y are covered with a dielectric layer that is thin at the side portion and thick at the top portion of the wall.
Abstract:
A fluorescent layer (R), fluorescent layer (G), and fluorescent layer (B) are formed according to each column by the screen printing method. As a result, spaces of the approximately the same thickness as the fluorescent layers (R), (G), and (B) exist between regions of the barrier ribs that extend in the column direction and a protective layer. The lowering of the efficiency of exhaust and the efficiency of sealing in discharge gas can thus be avoided. As a result, discharge gas can be made to exist appropriately in the discharge spaces without fail, thereby enabling excellent display characteristics to be obtained. Furthermore, since display cells that neighbor each other in the column direction are partitioned by barrier ribs, erroneous discharge will not occur. The non-discharge gap can thus be narrowed and increased fineness can be accommodated for readily.
Abstract:
This invention is a method of forming ribs of a plasma display panel by transfer-printing a glass paste on a glass substrate. The method comprises; forming a recess having a configuration corresponding to ribs arranged in parallel with each other and a joining element joining the ribs, filling the recess with the glass paste, and starting transfer-printing the glass paste on the glass substrate from a portion of the glass paste corresponding to the joining element filled in the recess. The method ensures that the glass paste comes off substantially completely from within the recess as it is being transfer-printed on the glass substrate and that the ribs are formed with high precision.
Abstract:
A plasma display panel assembly includes electrodes and a dielectric layer covering the electrodes. The dielectric layer is formed of a low-melting-point glass, and the electrodes are formed of a metal containing a crystallized glass. The metal and the low-melting-point glass are simultaneously fired to complete the electrodes and the dielectric layer. Thus, in a manufacturing process of an AC plasma display panel, the number of firing steps can be reduced.
Abstract:
Each of partition walls of a plasma display panel has a pair of transverse walls which are disposed in parallel with each other having a space equal to a width of a discharge cell in the column direction, and vertical walls which are disposed between the pair of vertical walls in parallel with each other having a space equal to a width of the discharge cell in the row direction and which are integrally coupled to the pair of transverse walls. Each partition wall defines discharge cells in each line of the plasma display panel, and is formed such that a width of a portion of the transverse wall situated between the adjacent vertical walls is larger than a width of a portion of the transverse wall coupled to the vertical wall.
Abstract:
An AC type plasma display panel is designed so as to have the relationships of Wb>Wg>Wr and Db>Dg>Dr, where Wb, Wg and Wr denote the widths of blue, green and red discharge cells and Db, Dg and Dr denote the widths of address electrodes (15b, 15g and 15r) corresponding to respective colors. As a result, it is possible to adjust the electric charge stored in the discharge cells due to a write discharge according to colors, thereby making complete lighting write voltages of the discharge cells uniform. This achieves the AC type plasma display panel with an excellent display quality that has less occurrence of erroneous discharge and discharge flicker and an improved white display quality.
Abstract:
A PDP having a novel cell structure that is superior in light emission efficiency is provided. A conductive film to be display electrodes X and Y is formed on side portions of a wall so that a main surface that contributes to discharge in the display electrode X is disposed so as to be opposed to a main surface of the neighboring display electrode Y via a gas space. A power supplying portion straddling plural cells in the display electrodes X and Y is provided on the upper surface of the wall. The display electrodes X and Y are covered with a dielectric layer that is thin at the side portion and thick at the top portion of the wall.
Abstract:
A plasma display panel capable of improving dark contrast. A unit light emission region is comprised of a display discharge cell in which a discharge is produced between portions of row electrodes X, Y of each row electrode pair (X, Y) opposing each other, and a reset and address discharge cell arranged in parallel with the display discharge cell, in which a discharge is produced between portions of the row electrode Y and a row electrode X of another adjacent row electrode pair (X, Y). The display discharge cell and reset and address discharge cell are communicated with each other. A light absorbing layer is formed in a portion of the reset and address discharge cell opposing the display surface. According to another aspect, the unit light emission region in the display panel comprises a first discharge cell and a second discharge cell comprising a light absorbing layer. A sustain discharge for emitting light for displaying an image is produced in the first discharge cell, while a variety of control discharges causing light emission not associated with a displayed image are produced in the second discharge cell. According to a further aspect, unit light emission regions are formed at intersections of each of a plurality of first row electrodes and second row electrodes alternately formed on the front substrate such that the first row electrode and the second electrode in each pair are arranged in a reverse order to the preceding pair, and each of a plurality of column electrodes.
Abstract:
A plasma display panel for easy fabrication is provided with an improved black stripe structure. The structure eliminates the black stripes on a front substrate, leading to more freedom in material selection without suffering from the known problem of tarnishing of component members. Further, non-discharge spaces are provided in barrier ribs formed on a rear substrate and black material layers functioning as the black stripes are formed in cavities corresponding to the non-discharge spaces. Thus, this structure serves to form the black material layers in a sequential process which is similar to that for forming phosphor layers, thereby allowing the plasma display panel to have excellent contrast without complicating the structure and the fabrication process thereof.