Abstract:
A method for making the electron emission apparatus is provided. In the method, an insulating substrate including a surface is provided. A number of grids are formed on the insulating substrate and defined by a plurality of electrodes. A number of conductive linear structures are fabricated and supported by the electrodes. The number of conductive linear structures are substantially parallel to the surface and each of the grids contains at least one of the conductive linear structures. The conductive linear structures are cut to form a number of electron emitters. Each of the electron emitters has two electron emission ends defining a gap therebetween.
Abstract:
A conductive film of thickness of from 3 nm to 50 nm made from a metal or ally formed on a substrate, wherein the ratio of density thereof to bulk density of the metal or alloy is from 0.2 to 0.5, and the ratio of resistivity thereof to bulk resistivity of the metal or alloy is from 100 to 100000.
Abstract:
An electron-emitting device has a pair of device electrodes formed on a substrate and an electroconductive film connected to the device electrodes. The electroconductive film has a first gap between the device electrodes and has a carbon film having a second gap at least in the first gap. The substrate is formed by stacking a nitrogen-contained activation suppressing layer and an activation accelerating layer having a nitrogen containing ratio smaller than that of the activation suppressing layer onto a base and has nitrogen containing ratio distribution in the activation suppressing layer in a film thickness direction. The nitrogen containing ratio of the activation suppressing layer at the activation accelerating layer side is smaller than that at the base side.
Abstract:
An electron-emitting device and a fabricating method thereof are provided. First, a substrate, having a first side and a second side which is opposite to the first side, is provided. Afterwards, a first electrode pattern layer is formed on the first side of the substrate. Next, a conductive pattern layer is formed on the substrate and the first electrode pattern layer. After that, an electron-emitting region is formed in the conductive pattern layer. Then, a second electrode pattern layer is formed on the second side of the substrate and partially covers the conductive pattern layer. The fabricating method has a simple fabricating process and a low fabricating cost.
Abstract:
A surface-conduction electron emitter includes a substrate, two electrodes disposed on the substrate and parallel to each other, and a plurality of line-shaped carbon nanotube elements fixed on at least one electrode. One end of each carbon nanotube element points to the other electrode. An electron source using the surface-conduction electron emitter includes a substrate, a plurality of electrodes disposed on the substrate and parallel to each other, and a plurality of line-shaped carbon nanotube elements fixed on at least one electrode. One end of each carbon nanotube element points to the other electrode.
Abstract:
The invention provides an electron beam apparatus having: a rear plate having a plurality of electron-emitting devices each provided with a device electrode, and a plurality of wirings connected to the device electrodes; and a face plate being provided with an anode electrode, and being arranged in opposition to the rear plate so as to be irradiated with an electron emitted from the electron-emitting device, wherein the device electrode is electrically connected to the wiring through an additional electrode, and the additional electrode is formed from an electroconductive material of which phase transition from a solid phase directly into a vapor phase is caused at a temperature not lower than a melting point of the device electrode within an evacuated atmosphere.
Abstract:
An object of the present invention is to prevent a device portion from being electrostatically charged with the use of the high resistivity film, and at the same time prevent a leak current passing the device portion due to an existing high resistivity film, in an electron source with the use of a surface-conduction electron-emitting device. This process for manufacturing the electron-emitting device comprises the steps of: forming an electroconductive thin film 4 astride device electrodes; forming the high resistivity film 7 in a region except the electroconductive thin film 4 and a perimeter thereof; subjecting the electroconductive thin film 4 to forming processing, to form a fissure 5 therein; and depositing a carbon film 6 inside the fissure 5 and in a region reaching the high resistivity film 7 from the edge of the fissure 5, by applying voltage between device electrodes 2 and 3 under an atmosphere containing a carbon compound.
Abstract:
A method for manufacturing electron emitting devices each having electrodes formed on a substrate and an electroconductive thin film connected between a pair of electrodes and having an electron emitting region is provided which can manufacture electron emitting devices having an excellent uniformity of electron emitting characteristics by improving the formation of liquid droplets to be dispensed to the substrate. In the manufacturing method, the substrate formed with the electrodes is subjected to a hydrophobic process using a silane coupling agent which contains two or more acetoxy groups in a molecule, and thereafter liquid droplets containing material for forming the electroconductive thin film are dispensed to the substrate. An image of excellent uniformity can be displayed by adopting electron emitting devices manufactured in the above manner to an image display apparatus.
Abstract:
An image forming apparatus in which a first substrate provided with an electron-emitting device and an image displaying member which electrons emitted from the electron-emitting device irradiate are arranged to be opposed is provided with a deflecting means deflecting the electrons emitted from the electron-emitting device and a trapping unit trapping an inert gas ionized by the electrons. Thereby, the damages of the electron-emitting device by the inert gas are prevented, and the life of an image display apparatus is aimed to be elongated.
Abstract:
A miss landing measure on a face plate of electrons emitted from electron-emitting devices by the warping of a rear plate and the face plate accompanying heat processes, such as seal bonding, is provided. Initial velocity vectors of electrons emitted from an electron-emitting area of an electron-emitting device formed on the rear plate has a distributed tendency according to an in-plane distribution of normal line directions of the rear plate so that the electrons emitted from each of the plurality of electron-emitting devices may irradiate each of the plurality of light emitting portions, corresponding to each of the electron-emitting devices, formed on the face plate.