Abstract:
A plasma display panel. A first substrate and a second substrate are provided opposing one another with a predetermined gap therebetween. Address electrodes are formed on the second substrate. Barrier ribs are mounted between the first substrate and the second substrate defining a plurality of discharge cells. Phosphor layers are formed within the discharge cells. Discharge sustain electrodes are formed on the first substrate. The discharge sustain electrodes include bus electrodes that extend such that a pair of the bus electrodes is provided for each of the discharge cells, and protrusion electrodes extending from each of the bus electrodes such that a pair of opposing protrusion electrodes is formed within an area corresponding to each discharge cell. A distal end of each protrusion electrode includes an indentation such that a gap is formed between the pair of opposing protrusion electrodes, and an aperture is formed in each protrusion electrode.
Abstract:
A plasma display device includes: a plasma display panel; a chassis base supporting the plasma display panel, the chassis base being parallel to the plasma display panel; a thermally conductive layer arranged between the plasma display panel and the chassis base, the thermally conductive layer being adjacent to the plasma display panel; and a thermally non-conductive layer arranged between the thermally conductive layer and the chassis base.
Abstract:
A plasma display panel where the address electrodes are designed to have perforated portions in the vicinity of display electrodes to prevent the build up of unwanted wall charges in the vicinity of the display electrodes to thus prevent mis-discharge in the plasma display panel. The perforations can be quadrilateral in shape, and can be made to different sizes depending on the color of the phosphor in the vicinity of the perforation. As a result, drive voltage margin quality between the different colors can be improved to produce a more reliable display.
Abstract:
A plasma display panel includes first and second substrates facing and spaced apart from each other, barrier ribs disposed between the first and second substrates to define discharge cells, address electrodes formed on the first substrate and extending in a first direction to correspond to the discharge cells, first and second electrodes formed on the second substrate and extending in a second direction crossing the first direction to correspond to the discharge cells, and a dielectric layer formed on the second substrate to cover the first and second electrodes. The first and second electrodes each include a plurality of bus lines of which some of the bus lines form discharge gaps at a central portion of the respective discharge cells. The dielectric layer is provided with grooves formed within the discharge gaps to decrease the requisite firing voltage and improve the light emission efficiency of the panel.
Abstract:
Provided is a method of manufacturing a plasma display panel. The method includes preparing a substrate having a display area for displaying an image and a non-display area formed on edges of the display area, forming a plurality of discharge electrodes extending from the display area to the non-display area, and barrier ribs defining discharge cells, and continuously and simultaneously applying raw materials for forming phosphor layers for emitting lights of various colors in the discharge cells using a plurality of dispensers that move from one direction to another direction on the substrate. The raw materials for forming the phosphor layer for emitting lights various colors can be simultaneously and continuously applied using the dispenser, and thus the process of applying the raw materials for forming the phosphor layers is simplified. Also, the locations of the dispensers in the non-display area are different, and thus the thickness difference due to the overlapping raw materials can be reduced.
Abstract:
A plasma display panel includes designed to improve optical efficiently and to reduce misdischarging between discharge cells. The address electrodes have varying widths so that they are narrow in discharge cells and are relatively wide outside of discharge cells. Discharge gas filling the discharge cells have an elevated Xe content, preferably 10 to 30%. Other variations further include having striped and matrix patterned barrier ribs, forming the discharge sustain electrodes in tabs extending in pairs into the middle of the discharge cells, and varying the width of address electrodes at various locations outside of the discharge cells.
Abstract:
A plasma display panel includes a front glass substrate and a rear glass substrate coupled to each other by a sealing material coated at edges of the front and rear glass substrates, first and second electrodes disposed perpendicular to each other on opposing inner surfaces of the front and rear glass substrates facing each other, a dielectric layer formed on each of the opposing inner surfaces of the front and rear glass substrates to cover the first and second electrodes, partitions formed on an upper surface of the dielectric layer of the rear glass substrate, red, green and blue fluorescent substances coated between the partitions, and a non-light emitting zone filling portion formed by filling a non-light emitting zone existing between the outermost one of the partitions and the sealing material with a material used for one of the partitions.
Abstract:
A plasma display module including a plasma display panel (PDP) including a first substrate and a second substrate and having an alignment mark formed thereon, and a chassis supporting the PDP and having an alignment mark corresponding to the alignment mark of the PDP.
Abstract:
A plasma display apparatus and a method of manufacturing a plasma display apparatus are provided. According to the invention, the accuracy of alignment of the plasma display apparatus is improved. A plasma display apparatus according to one embodiment of the present invention comprises a plasma display panel for producing images and a chassis to which the plasma display panel is attached. The plasma display panel comprises at least one aligning mark and is attached to a first surface of the chassis. The chassis comprises at least one aligning hole corresponding in position to the position of the aligning mark on the plasma display panel. The chassis comprises aluminum and an anti-reflective material. The anti-reflective material is present in the chassis in an amount ranging from about 12 to about 26 parts by weight per 100 parts by weight aluminum.
Abstract:
A plasma display panel plasma display panel includes a first substrate, a second substrate facing the first substrate, address electrodes between the first and second substrates, barrier ribs between the first and the second substrates, the barrier ribs defining discharge cells, phosphor in each discharge cell and first and second opaque electrodes between the first and second substrates, the first and second opaque electrodes extending orthogonally to the address electrodes. Each opaque electrode includes a first layer and a second layer, the first layer being narrower than the second layer. Each discharge cell is between a corresponding address electrode on a first side and a corresponding pair of first and second opaque electrodes on a second side, opposite the first side.