Abstract:
A refrigerant system incorporates an economizer circuit, and a thermoelectric cooler to provide a performance boost to the conventional economized refrigerant system. A thermoelectric cooler cools the refrigerant either directly in a main refrigerant circuit, or in an economized circuit, or both.
Abstract:
A refrigerant system is configured to alternatingly run in an economized mode and a standard mode. A control system shifts the refrigerant system between the economized mode and standard mode responsive to a determined efficiency reflecting a combination of at least two of: compressor isentropic efficiency; condenser efficiency; evaporator efficiency; efficiency of hardware mechanically powering the compressor; and a mode-associated cycling efficiency. In a bypass mode, a bypass refrigerant flow from an intermediate port may return to the suction port. Shifting into the bypass mode may be similarly controlled based upon the determined efficiency.
Abstract:
A refrigerant system utilizes an expander to expand refrigerant and to drive or assist in driving an associated compressor. By varying the compressor load, the speed of the expander can be adjusted to achieve the desired thermodynamic characteristics of the expanding refrigerant and enhance expander operation.
Abstract:
A refrigerant vapor compression system includes an evaporator having a plurality of longitudinally extending, flattened heat exchange tubes disposed in parallel, spaced relationship. Each of the heat exchange tubes has a flattened cross-section and defining a plurality of discrete, longitudinally extending refrigerant flow passages. One or more frost detection sensor(s) is/are installed in operative association with the evaporator for detecting a presence of frost/ice formation on at one of the flattened heat exchange tubes and associated heat transfer fins. A defrost system is provided and operatively associated with the evaporator heat exchanger A controller, operatively coupled to the frost detection sensor(s) and to the defrost system, selectively activates the defrost system to initiate a defrost cycle of the evaporator in response to the signal indicative of the presence of frost formation on the flattened heat exchange tubes and heat transfer fins.
Abstract:
A multi-zone HVAC&R system has its control programmed to provide diagnostic testing of air handling components and refrigerant components associated with each climate controlled zone in sequence. The control changes the original position of the corresponding component and a resultant change in a relevant operational parameter is sensed. If the actual change is outside of the tolerance band associated with the expected change, then the determination is made that the component under consideration is malfunctioning. The periodicity of a diagnostic procedure for a particular component is typically defined by its criticality and reliability level. If the change in the corresponding operation parameter is recorded and stored in the database, the component degradation can be observed over time and a prognostic prediction can be made when a particular component requires preventive maintenance or replacement.
Abstract:
A refrigerant system is provided with an expansion device that may be a thermostatic expansion device or an electronic expansion device. A bypass line selectively allows a portion of refrigerant to bypass the expansion device and to flow through a fixed restriction expansion device such as an orifice positioned in parallel configuration with the main expansion device. A valve selectively enables or blocks refrigerant flow through this bypass line depending on the volume of refrigerant required to circulate through the refrigerant system as defined by environmental conditions and a mode of operation. The valve can be a simple shutoff valve or a three-way valve selectively allowing or blocking refrigerant flow through a particular refrigerant line or lines. In one embodiment, the expansion device is the main expansion device for the refrigerant system. In the other embodiment, the expansion device is a vapor injection expansion device for expanding refrigerant for performing an economizer function. The present invention allows the use of a smaller expansion device, which can be more precisely controlled, while still allowing the accommodation of higher refrigerant mass flow when necessary.
Abstract:
A screw compressor has a housing (22; 302) having first (53; 330) and second (58; 340) ports along a flowpath. A first rotor (26; 306) has a lobed body. A second rotor (28; 308, 310) has a lobed body enmeshed with the first rotor body. The rotors and housing cooperate to define a compression path between suction (60; 332) and discharge (62; 342) locations along the flowpath. Means (100, 110, 120; 200, 210, 220; 370, 380, 390) provide relative longitudinal movement between a blocking portion (57; 352) of the housing and at least one of the first rotor and second rotor between: a first condition wherein a pocket of the first and second rotors is closed by the blocking portion; and a second condition wherein the blocking portion does not close the pocket. To provide capacity control, a control system (110; 390) is configured to provide duty cycle control of the movement.
Abstract:
A refrigerant system is provided with a compressor having a motor that is operable at least at two distinct speeds. The pulse width modulation control is provided to cycle a compressor motor operation between its at least two speeds at a specific rate to exactly match thermal load demands in a conditioned space. The present invention reduces cycling and other efficiency losses as have been experienced in the prior art, as well as minimizes cost and may improve reliability. Also, the present invention can be utilized in conjunction with other known unloading techniques.
Abstract:
A refrigerant system is provided with a pulse width modulation valve. A compressor temperature is monitored to prevent potential reliability problems and compressor failures due to an excessive temperature inside the compressor A control changes the pulse width modulation valve duty cycle rate to maintain temperature within specified limits, while achieving the desired capacity, and complying with design requirements of a conditioned environment, without compromising refrigerant system reliability. As the compressor temperature increases, the pulse width modulation valve duty cycle time is adjusted to ensure that adequate amount of refrigerant is circulated through the compressor to cool the compressor internal components.
Abstract:
A refrigerant system control software upgrades are remotely downloaded over information carrying media. The software upgrades can be timed to occur when the Internet traffic is low. Once the upgrade has been received, a verification test may be performed for the refrigerant system components affected by the software upgrade. The test is monitored, and the results are sent back to the remote location such that the remote location can ensure the software upgrade was successful.