Abstract:
The present invention provides a hard-to-fall fixing structure of wire harness contributive to cost reduction in which VOC is not generated and flapping sound (noise) of wire harness is hard to occur. In the fixing structure of a wire harness to a vehicle interior material according to the present invention, a silencer pad (acoustical material) is fixed to the vehicle interior material, and the silencer pad is provided with a latching piece formed by cutting a portion of the present silencer pad, and the wire harness is latched to the latching piece.
Abstract:
An imaging device unit includes: an imaging device having an imaging surface located on one side thereof in a width direction thereof and a rear surface located oppositely to the imaging surface; a heat radiating plate radiating heat generated in the imaging device, the heat radiating plate being arranged at the rear surface of the imaging device; and a signal processing substrate causing the imaging device to be operated. The heat radiating plate and the signal processing substrate are arranged opposedly to each other with a spacer being interposed therebetween and with a space portion being obtained therebetween.
Abstract:
A scalable coding apparatus is provided to suppress deterioration of a quality of a coded signal in a normal frame next to a frame compensated for the occurrence of a data loss. The scalable coding apparatus is provided with a core-layer coding section (11) to carry out core-layer coding for the n-th frame input audio signal, an ordinary coding section (121) to generate expanding-layer ordinary-coding layer L2(n) by carrying out ordinary-coding of an expanding layer for the input audio signal, a deterioration-compensation coding section (123) to generate an expanding-layer-deterioration coding data L2′(n) by carrying out compensation for quality deterioration of coded audio in a current frame due to a past frame loss, a judging section (125) to determine whether either the expanding-layer ordinary-coding data L2(n) or the expanding-layer deterioration-coding data L2′(n) should be output from the expanding-layer coding section (12) as expanding-layer coding data of the current frame.
Abstract:
A pulse allocating method capable of coding stereophonic voice signals efficiently. In the fixed code note retrievals of this pulse allocating method, for individual subframes, the stereophonic voice signals are compared to judge similarity between channels, and are judged on their characteristics. On the basis of the similarity between the channels and the characteristics of the stereophonic signals, the pulse numbers to be allocated to the individual channels are determined. Pulse retrievals are executed to determine the pulse positions for the individual channels, so that the pulses determined are coded.
Abstract:
A liquid crystal display panel includes: one pair of substrates each of which is disposed so as to face each other with a liquid crystal layer pinched therebetween; alignment films that are formed on opposing faces of the one pair of substrates with the liquid crystal layer pinched therebetween; a plurality of columnar spacers that are formed in a display area on one side of the one pair of substrates and maintain a cell gap between the one pair of substrates; and a light shielding member that is formed on one side of the one pair of substrates of a non-opening portion including a spot at which the columnar spacers are formed.
Abstract:
In a system having plural terminals including terminals A, B, when the terminal A is editing a data object and editing information is shared among the plural terminals, if the terminal B performs a changeover operation of displayed page, the editing operation in the terminal A is cancelled, and the editing information is deleted in the other terminals. In the terminal A, the editing information by that time is held, and when the data object is restored, the held editing information is transmitted to the other terminals. Then the initial display status is restored in the other terminals.
Abstract:
The X-ray fluoroscopic apparatus of this invention includes a slide arm for supporting an X-ray tube, a middle slider for holding the support arm to be movable in directions along an irradiation axis of the X-ray source, and a strut for holding the middle slider to be movable the directions along the irradiation axis. Thus, compared with an amount of stroke of the X-ray tube, an amount of movement of each of the middle slider and the support arm can be small, and each of the strut, middle slider and support arm can be shortened to reduce apparatus height. Therefore, the amount of stroke of the X-ray source can be secured appropriately, while inhibiting an increase in installation space.
Abstract:
In the liquid crystal display device of the present invention, channels 13 containing gaps 12 of the adjacent color filers CF are formed on the surface of a transparent thickness section 11, such that when orientation agent is applied by means of a roller to the surface of the transparent section wall 11, the surplus orientation agent is conducted to either side of the transparent thickness wall 11 through the channels 13, such that the orientation agent does not gather and is dissolved, and the orientation thickness film does not become uneven as to produce any orientation defect and defective display is thereby avoided.
Abstract:
A fixed codebook searching apparatus which slightly suppresses an increase in the operation amount, even if the filter applied to the excitation pulse has the characteristic that it cannot be represented by a lower triangular matrix and realizes a quasi-optimal fixed codebook search. This fixed codebook searching apparatus is provided with an algebraic codebook that generates a pulse excitation vector; a convolution operation section that convolutes an impulse response of auditory weighted synthesis filter into an impulse response vector that has a value at negative times, to generate a second impulse response vector that has a value at second negative times; a matrix generating section that generates a Toeplitz-type convolution matrix by means of the second impulse response vector; and a convolution operation section that convolutes the matrix generated by matrix generating section into the pulse excitation vector generated by algebraic codebook.
Abstract:
A solid-phase sheet growing substrate (100) includes a main surface (1) and a side surface (2A, 2B) surrounding the main surface (1). The main surface (1) is divided by a peripheral groove (10A) into a surrounding portion (12) located at the outer side of the peripheral groove (10A) and an inner portion (11) located at the inner side of the peripheral groove (10A), and a slit groove (2) separated from the peripheral groove (10A) is formed on the side surface (2A) of the surrounding portion (12).