Abstract:
Systems and methods are disclosed for enabling a mesh network node to switch from a base station role to a user equipment role relative to a second mesh network node, and vice versa. By switching roles in this manner, the mesh network node may be able to benefit from increased uplink or downlink speed in the new role. This role reversal technique is particularly useful when using wireless protocols such as LTE that are asymmetric and allow differing throughput on uplink and downlink connections. Methods for determining whether to perform role reversal are disclosed, and methods for using role reversal in mesh networks comprising greater than two nodes are also disclosed.
Abstract:
Systems and methods are disclosed for a local evolved packet core (EPC) that interoperates with an eNodeB and a remote EPC. if it is determined that it is possible or likely that the eNodeBs may lose the connection to the remote EPC, or if a connection has been lost, the local EPC may serve as a transparent proxy between the eNodeBs and the remote EPC, identify active sessions and transparently proxy those sessions, destroy or de-allocate unneeded sessions or bearers, and download and synchronize application data and authentication credentials, such as HSS or AAA data, to provide authentication to mobile devices once offline. The use of the local EPC and/or the remote EPC may be toggled, or switched, preemptively or reactively, based on various network conditions. The remote EPC may be disconnected proactively when the local EPC determines that there is no connectivity.
Abstract:
In this invention, we disclose methods of establishing a cellular network having backhaul flexibility, comprising, establishing, at a first cellular base station, a first connection with a core cellular network; establishing, at the first cellular base station, an inter-base station connection with a second cellular base station for relaying traffic from the first and the second cellular base stations to the core cellular network, the second cellular base station having a second connection with the core cellular network; determining, at the first cellular base station, if the quality of the first connection falls below a threshold parameter; and terminating, at the first cellular base station, the first connection in favor of the second connection if the quality of the first connection falls below the threshold parameter.
Abstract:
Systems and methods relating to full duplex mesh networks are disclosed. In one embodiment, a mesh network comprising a plurality of transceiver nodes using a single frequency band may be disclosed, each transceiver node comprising: a first transceiver for transmitting and receiving to and from a backhaul node on the single frequency band; and a second transceiver for transmitting and receiving to and from an access node on the single frequency band, each transceiver of each transceiver node performing self-interference cancellation to send and receive full duplex data on the single frequency band at substantially the same time, thereby enabling the creation of a mesh network with at least one transceiver node having both access and backhaul using only the single frequency band.
Abstract:
Systems and methods are disclosed for a local evolved packet core (EPC) that interoperates with an eNodeB and a remote EPC. if it is determined that it is possible or likely that the eNodeBs may lose the connection to the remote EPC, or if a connection has been lost, the local EPC may serve as a transparent proxy between the eNodeBs and the remote EPC, identify active sessions and transparently proxy those sessions, destroy or de-allocate unneeded sessions or bearers, and download and synchronize application data and authentication credentials, such as HSS or AAA data, to provide authentication to mobile devices once offline. The use of the local EPC and/or the remote EPC may be toggled, or switched, preemptively or reactively, based on various network conditions. The remote EPC may be disconnected proactively when the local EPC determines that there is no connectivity.
Abstract:
In this invention, we disclose methods directed toward integrating an ad hoc cellular network into a fixed cellular network. The methods disclosed herein automate the creation and integration of these networks. In additional embodiments, we disclose methods for establishing a stand-alone, ad hoc cellular network. In either of these implementations, we integrate or establish an ad hoc cellular network using mobile ad hoc cellular base stations configured to transmit and receive over a variety of frequencies, protocols, and duplexing schemes. The methods flexibly and dynamically choose an access or backhaul configuration and radio characteristics to optimize network performance. Additional embodiments provide for enhancing an existing network's coverage as needed, establishing a local network in the event of a loss of backhaul coverage to the core network, and providing local wireless access service within the ad hoc cellular network.
Abstract:
In this invention, we disclose methods directed toward integrating an ad hoc cellular network into a fixed cellular network. The methods disclosed herein automate the creation and integration of these networks. In additional embodiments, we disclose methods for establishing a stand-alone, ad hoc cellular network. In either of these implementations, we integrate or establish an ad hoc cellular network using mobile ad hoc cellular base stations configured to transmit and receive over a variety of frequencies, protocols, and duplexing schemes. The methods flexibly and dynamically choose an access or backhaul configuration and radio characteristics to optimize network performance. Additional embodiments provide for enhancing an existing network's coverage as needed, establishing a local network in the event of a loss of backhaul coverage to the core network, and providing local wireless access service within the ad hoc cellular network.
Abstract:
In this invention, we disclose methods directed toward integrating an ad hoc cellular network into a fixed cellular network. The methods disclosed herein automate the creation and integration of these networks. In additional embodiments, we disclose methods for establishing a stand-alone, ad hoc cellular network. In either of these implementations, we integrate or establish an ad hoc cellular network using mobile ad hoc cellular base stations configured to transmit and receive over a variety of frequencies, protocols, and duplexing schemes. The methods flexibly and dynamically choose an access or backhaul configuration and radio characteristics to optimize network performance. Additional embodiments provide for enhancing an existing network's coverage as needed, establishing a local network in the event of a loss of backhaul coverage to the core network, and providing local wireless access service within the ad hoc cellular network.
Abstract:
Systems, methods and computer software are disclosed for fronthaul. In one embodiment a method is disclosed, comprising: providing a virtual Radio Access Network (vRAN) having a centralized unit (CU) and a distributed unit (DU); and interconnecting the CU and DU over an Input/Output (I/O) bus using Peripheral Component Interconnect-Express (PCIe); wherein the CU and the DU include a PCI to optical converter and an optical to PCI converter.
Abstract:
Systems, methods and computer software are disclosed for providing an energy efficient base station with synchronization. In one embodiment, a method is disclosed, comprising: performing traffic analysis to determine off-peak hours duration when traffic is light; updating downlink and uplink schedulers to transmit a minimum required signaling and control information; and wherein updating downlink and uplink scheduler for minimum required signaling and control information further comprises scheduling, in a downlink direction, at least one of transmitting only reference symbols over selected OFDM symbols, PDCCH on up to a first three OFDM symbols, PSS and SSS on a central six PRBs and PBCH.