Abstract:
Transmission over a communication channel using carrier sense multiple access collision avoidance (CSMA/CA) may be performed by determining for each frame if the communication channel is busy after a backoff time proportional to a randomly generated number within a contention window (CW). When the channel is not busy, a frame of data may be transmitted. When the channel is busy, the device may periodically determine if the communication channel is busy after subsequent backoff times. The value of CW is adjusted for each subsequent backoff time using a fairness protocol, in which the value of CW is increased until the value of CW reaches a maximum CW value; and then the value of CW is held until a fairness number of backoff repetitions reaches a fairness threshold; then the value of CW is reduced incrementally until the value of CW reaches a minimum CW value.
Abstract:
Electric Vehicle Service Equipment (EVSE) and Electric Vehicle (EV) are disclosed n. In an example embodiment, a modem is coupled to the pilot wire that couples the EVSE and the EV. The modem transmits both pulse width modulation (PWM) command signals and power line communication (PLC) signals to a remote device via the pilot wire. The modem interleaves the PWM and PLC signals on the pilot wire so that latency requirements for the PWM signals are maintained. The modem supports parallel protocol stacks in which PLC signals are processed in a first path and PWM signals are processed in a second path that bypasses the first path and provides the PWM signals directly to a MAC layer. The modem may create a modified frame for the PLC signals to maintain the latency requirements.
Abstract:
Systems and methods for setting a carrier-sensing mechanism in a PLC node are disclosed. In a PLC standard, coexistence is achieved by having the nodes detect a common preamble and backing off by a Coexistence InterFrame Space (cEIFS) time period to help the node to avoid interfering with the other technologies. In one embodiment, a PHY primitive is sent from the PHY to the MAC know that there has been a preamble detection. A two-level indication may be used - one indication after receiving the preamble and other indication after decoding the entire frame. The MAC sets the carrier-sensing mechanism based on the preamble detection.
Abstract:
Embodiments of a power line communication (PLC) transmitter device for overlapping priority contention windows are presented. A processor is configured to perform a physical channel sense operation to detect an idle channel on a PLC network. A transmitter transmits a normal priority data packet on the channel during a high priority contention window. In another embodiment, a Normal Priority Contention Window (NPCW) is allowed to overlap with a High Priority Contention Window (HPCW). The minimum contention window for the normal priority frames (i.e., NPCW) is equal to or longer than the contention window for high priority frames (i.e., HPCW). By making the NPCW longer than the HPCW, the high priority frames will have a better chance than normal priority frames to get access to the channel on transmission reattempts.
Abstract:
Systems and methods for enabling co-existence among power line communications (PLC) technologies are described. In some embodiments, a method performed by a PLC device, such as a PLC gateway, may include detecting a communication from foreign PLC device on a PLC network in response to a foreign preamble received by the PLC device, terminating transmissions to the PLC network for a network-specific co-existence Extended Interframe Space (cEIFS) time period in response to the foreign preamble, and resuming transmissions to the PLC network after expiration of the network-specific time period.
Abstract:
Systems and methods for routing protocols for power line communications (PLC) are described. In some embodiments, a method performed by a PLC device, such as a PLC meter, may include active discovering and identifying at least one bootstrapping agent and a personal area network (PAN) identifier for one or more networks that are operating within a personal operating space of the PLC device. The device selects a target bootstrapping agent to use for the join process with a target network. The target bootstrapping agent may be selected from a list of bootstrapping agents associated with the target PAN identifier. If the attempt to join the target network fails, then the device further determines if other bootstrapping agents are associated with the target PAN identifier. The device selects an alternate target bootstrapping agent from the other bootstrapping agents that are associated with the target PAN identifier and reattempts the join process.
Abstract:
Apparatus (and related methods) for a power line communication network include a processor configured to receive beacons over a communication interface. The processor determines a link quality indicator (LQI) for each received beacon and ignores the beacons for at most a predetermined maximum number of beacon receptions when each LQI is below a threshold. The processor responds to a received beacon if the LQI for such received beacon exceeds the threshold or if a predetermined maximum number of beacons have been received with LQIs below the threshold.
Abstract:
A wireless combination device is coupled to an antenna for communicating via a first wireless network. A second wireless transceiver configured for communication via said second wireless network. A packet aggregator is coupled to the first wireless transceiver configures a frame aggregated packet for at least a portion of activities on the first wireless network. The frame aggregated packet includes a plurality of data packets and a dummy packet or spoofing so that said frame aggregated packet is extended in time or indicates an extension sufficient to overlap a Tx time interval or Rx time interval for communications occurring over a second wireless network. The first wireless network and said second wireless network are overlapping networks.
Abstract:
Systems and methods for setting a Network Allocation Vector (NAV) in a PLC node are disclosed. In a PLC standard, coexistence is achieved by having the nodes detect a common preamble and backing off by a Coexistence InterFrame Space (cEIFS) time period to help the node to avoid interfering with the other technologies. In one embodiment, a PHY primitive is sent from the PHY to the MAC know that there has been a preamble detection. A two-level indication may be used—one indication after receiving the preamble and other indication after decoding the entire frame. The MAC sets NAV to EIFS if a native preamble is detected. The MAC sets NAV to cEIFS if only a coexistence preamble is detected or if a non-native preamble is detected.
Abstract:
Systems and methods for enhanced carrier sense multiple access (CSMA) protocols are described. In various implementations, these systems and methods may be applicable to Power Line Communications (PLC). For example, a method may include attempting to access a communications channel to transmit a frame after a backoff time proportional to a randomly generated number within a contention window (CW), the CW having an initial value carried over from a previous transmission of a different frame. Additionally or alternatively, some of techniques described herein may facilitate the spreading of the time over which devices attempt to transmit packets, thereby reducing the probability of collisions using, for example, Additive Decrease Multiplicative Increase (ADMI) mechanisms.