Abstract:
A device has physical network interface port through which a user can monitor and configure the device. A backend process and a virtual machine (VM) execute on a host operating system (OS). A front end user interface process executes on the VM, and is therefore compartmentalized in the VM. There is no front end user interface executing on the host OS outside the VM. The only management access channel into the device is via a first communication path through the physical network interface port, to the VM, up the VM's stack, and to the front end process. If the backend process is to be instructed to take an action, then the front end process forwards an application layer instruction to the backend process via a second communication path. The instruction passes down the VM stack, across a virtual secure network link, up the host stack, and to the backend process.
Abstract:
A Network Flow Processor (NFP) integrated circuit receives, via each of a plurality of physical MAC ports, PCP (Priority Code Point) flows. The NFP also maintains, for each of a plurality of virtual channels, a linked list of buffers. There is one port enqueue engine for each physical MAC port. For each PCP flow received via the physical MAC port associated with a port enqueue engine, the engine causes frame data of the flow to be loaded into one particular linked list of buffers. Each engine has a lookup table circuit that is configurable so that the relative priorities of the PCP flows are reordered as the PCP flows are assigned to virtual channels. A PCP flow with a higher PCP value can be assigned to a lower priority virtual channel, whereas a PCP flow with a lower PCP value can be assigned to a higher priority virtual channel.
Abstract:
A pipelined run-to-completion processor includes no instruction counter and only fetches instructions either: as a result of being prompted from the outside by an input data value and/or an initial fetch information value, or as a result of execution of a fetch instruction. Initially the processor is not clocking. An incoming value kick-starts the processor to start clocking and to fetch a block of instructions from a section of code in a table. The input data value and/or the initial fetch information value determines the section and table from which the block is fetched. A LUT converts a table number in the initial fetch information value into a base address where the table is found. Fetch instructions at the ends of sections of code cause program execution to jump from section to section. A finished instruction causes an output data value to be output and stops clocking of the processor.
Abstract:
A pipelined run-to-completion processor includes no instruction counter and only fetches instructions either: as a result of being prompted from the outside by an input data value and/or an initial fetch information value, or as a result of execution of a fetch instruction. Initially the processor is not clocking. An incoming value kick-starts the processor to start clocking and to fetch a block of instructions from a section of code in a table. The input data value and/or the initial fetch information value determines the section and table from which the block is fetched. A LUT converts a table number in the initial fetch information value into a base address where the table is found. Fetch instructions at the ends of sections of code cause program execution to jump from section to section. A finished instruction causes an output data value to be output and stops clocking of the processor.
Abstract:
A hardware prefix reduction circuit includes a plurality of levels. Each level includes an input conductor, an output conductor, and a plurality of nodes. Each node includes a buffer and a storage device that stores a digital logic level. One node further includes an inverter. Another node further includes an AND gate with two non-inverting inputs. Another node further includes an AND gate with an inverting input and a non-inverting input. One bit of an input value, such as an internet protocol address, is communicated on the input conductor. The first level of the prefix reduction circuit includes two nodes and each subsequent level includes twice as many nodes as is included in the preceding level. A digital logic level is individually programmed into each storage device. The digital logic levels stored in the storage devices determines the prefix reduction algorithm implemented by the hardware prefix reduction circuit.
Abstract:
A Network Interface Device (NID) of a web hosting server implements multiple virtual NIDs. A virtual NID is configured by configuration information in an appropriate one of a set of smaller blocks in a high-speed memory on the NID. There is a smaller block for each virtual NID. A virtual machine on the host can configure its virtual NID by writing configuration information into a larger block in PCIe address space. Circuitry on the NID detects that the PCIe write is into address space occupied by the larger blocks. If the write is into this space, then address translation circuitry converts the PCIe address into a smaller address that maps to the appropriate one of the smaller blocks associated with the virtual NID to be configured. If the PCIe write is detected not to be an access of a larger block, then the NID does not perform the address translation.
Abstract:
A source code symbol can be declared to have a scope level indicative of a level in a hierarchy of scope levels, where the scope level indicates a circuit level or a sub-circuit level in the hierarchy. A novel instruction to the linker can define the symbol to be of a desired scope level. Location information indicates where different amounts of the object code are to be loaded into a system. A novel linker program uses the location information, along with the scope level information of the symbol, to uniquify instances of the symbol if necessary to resolve name collisions of symbols having the same scope. After the symbol uniquification step, the linker performs resource allocation. A resource instance is allocated to each symbol. The linker then replaces each instance of the symbol in the object code with the address of the allocated resource instance, thereby generating executable code.
Abstract:
A novel linker statically allocates resource instances of a non-memory resource at link time. In one example, a novel declare instruction in source code declares a pool of resource instances, where the resource instances are instances of the non-memory resource. A novel allocate instruction is then used to instruct the linker to allocate a resource instance from the pool to be associated with a symbol. Thereafter the symbol is usable in the source code to refer to an instance of the non-memory resource. At link time the linker allocates an instance of the non-memory resource to the symbol and then replaces each instance of the symbol with an address of the non-memory resource instance, thereby generating executable code. Examples of instances of non-memory resources include ring circuits and event filter circuits.
Abstract:
A novel allocate instruction and a novel API call are received onto a compiler. The allocate instruction includes a symbol that identifies a non-memory resource instance. The API call is a call to perform an operation on a non-memory resource instance, where the particular instance is indicated by the symbol in the API call. The compiler replaces the API call with a set of API instructions. A linker then allocates a value to be associated with the symbol, where the allocated value is one of a plurality of values, and where each value corresponds to a respective one of the non-memory resource instances. After allocation, the linker generates an amount of executable code, where the API instructions in the code: 1) are for using the allocated value to generate an address of a register in the appropriate non-memory resource instance, and 2) are for accessing the register.
Abstract:
A transactional memory (TM) includes a control circuit pipeline and an associated memory unit. The memory unit stores a plurality of rings. The pipeline maintains, for each ring, a head pointer and a tail pointer. A ring operation stage of the pipeline maintains the pointers as values are put onto and are taken off the rings. A put command causes the TM to put a value into a ring, provided the ring is not full. A get command causes the TM to take a value off a ring, provided the ring is not empty. A put with low priority command causes the TM to put a value into a ring, provided the ring has at least a predetermined amount of free buffer space. A get from a set of rings command causes the TM to get a value from the highest priority non-empty ring (of a specified set of rings).