Abstract:
In a valve timing adjusting device, a second rotation body includes a second sun gear part provided inside of a first rotation body, and is connected to a drive shaft or a driven shaft through inside of the sprocket part to be rotated corresponding to the drive shaft or the driven shaft. When the second rotation body is brought into contact with the sprocket part, rotation of the second rotation body relative to the first rotation body is restricted. A planetary rotation body includes a first planetary gear part engaged with the first sun gear part, and a second planetary gear part engaged with the second sun gear part. The planetary rotation body makes a sun-and-planet motion inward of the first sun gear part and the second sun gear part to change a phase of the relative rotation between the first rotation body and the second rotation body.
Abstract:
A valve timing control apparatus for an internal combustion engine includes: a power feeding brush including a tip end portion arranged to be slidably abutted on the slip ring; and a rotation angle sensing mechanism provided between one end portion of the motor output shaft, and the cover member confronting the one end portion of the motor output shaft, and arranged to sense a rotation angle of the motor output shaft, the power feeding brush being disposed in a range in which the power feeding brush is slid on the slip ring, in a range from a position which is deviated a predetermined angle in a rotation direction of the motor housing from an uppermost position of the other of the electric motor and the cover member in a vertical direction, to a lowermost position.
Abstract:
A valve timing control apparatus for an internal combustion engine includes: a power feeding brush including a tip end portion slidably abutted on the slip ring to feed electric power to the slip ring; and a rotation angle sensing mechanism including; a sensed portion provided to the one end portion of the motor output shaft, and a sensing portion provided to the cover member, and arranged to sense a rotation position of the sensed portion; the cover member including a recessed portion formed in an inner surface of the cover member, and recessed in an axially outward direction relative to the position of the opening end of the brush holding hole; and the sensed portion including a tip end portion inserted and disposed within the recessed portion to confront the sensing portion.
Abstract:
An apparatus (10) and method for controlling an angular position of a camshaft (12) in an internal combustion engine having a camshaft phaser (14) for controllably varying the phase relationship between a crankshaft of the internal combustion engine and the camshaft (12). The camshaft phaser (14) can be actuated by an electric motor (16) having an actuator shaft (18) operating through a gear reduction drive train (20) having a stationary adjusting member (22) which rotates when a phase change adjustment is desired. A sensor (30) can generate a signal corresponding to an angular position of the stationary adjusting member (22) of the gear reduction drive train (20). An engine control unit (40) can adjust a position of the camshaft (12) through operation of the electric motor (16) for rotating the stationary adjusting member (22) based on the generated signal corresponding to the angular position of the stationary adjusting member (22).
Abstract:
A continuously variable valve timing apparatus may include a camshaft, a plurality of wheels mounted to the camshaft, of which a wheel key is formed thereto respectively, a plurality of cam portions of which a cam and a cam key are formed thereto respectively, of which the camshaft is inserted thereto, of which relative phase angle with respect to the camshaft is variable, a plurality of inner brackets connected with the each wheel key and the each cam key, a plurality of a slider housings of which the each inner bracket is rotatably inserted thereto respectively, and rotatably configured around a hinge hole formed an upper side of a cam cap and a control portion selectively moving the slider housings to change relative position of a rotation center of the inner brackets.
Abstract:
A valve timing control apparatus for an internal combustion engine includes a driving rotation member to which rotation of a crankshaft is transmitted, a driven rotation member coupled to a camshaft so as to be rotatable relative to the driving rotation member, an electric motor having a motor output shaft to cause rotation of the driven rotation member relative to the driving rotation member, a cover member arranged axially facing a front end portion of the motor output shaft and an electromagnetic induction type rotational angle detection mechanism disposed between the motor output shaft and the cover member so as to detect a rotational angle of the motor output shaft. The rotational angle detection mechanism has a detected part provided to the front end portion of the motor output shaft and a detecting part provided to a portion of the cover member axially facing the detected part.
Abstract:
A valve timing control apparatus for an internal combustion engine includes: a power feeding brush including a tip end portion arranged to be slidably abutted on the slip ring; and a rotation angle sensing mechanism provided between one end portion of the motor output shaft, and the cover member confronting the one end portion of the motor output shaft, and arranged to sense a rotation angle of the motor output shaft, the power feeding brush being disposed in a range in which the power feeding brush is slid on the slip ring, in a range from a position which is deviated a predetermined angle in a rotation direction of the motor housing from an uppermost position of the other of the electric motor and the cover member in a vertical direction, to a lowermost position.
Abstract:
A method for controlling an electric variable cam timing (VCT) actuator is disclosed. The method includes during engine shutdown, adjusting camshaft position with an electric VCT actuator to a target starting location, applying a first current to the electric VCT actuator to maintain the target starting location, and during engine startup before camshaft position feedback becomes available, applying a second current to the electric VCT actuator to maintain the target starting location.
Abstract:
A valve timing control apparatus for an internal combustion engine includes: a power feeding brush including a tip end portion slidably abutted on the slip ring to feed electric power to the slip ring; and a rotation angle sensing mechanism including; a sensed portion provided to the one end portion of the motor output shaft, and a sensing portion provided to the cover member, and arranged to sense a rotation position of the sensed portion; the cover member including a recessed portion formed in an inner surface of the cover member, and recessed in an axially outward direction relative to the position of the opening end of the brush holding hole; and the sensed portion including a tip end portion inserted and disposed within the recessed portion to confront the sensing portion.
Abstract:
A valve-timing control apparatus varies a relative phase between a cam shaft and a crankshaft by energizing an electric motor through a power-feeding brush provided to be in contact with a slip ring. The valve-timing control apparatus includes a retaining member slidably retaining the power-feeding brush; a connector provided in the retaining member and connected to a power source; a pigtail harness including one end portion connected with the power-feeding brush, and another end portion connected with a terminal of the connector through a fixing portion; and a guide portion provided in the retaining member and including an outer circumferential surface formed in an arc-shape. The pigtail harness bends along the outer circumferential surface of the guide portion. The another end portion extends substantially in a linear arrangement from the fixing portion to a bending portion at which the pigtail harness bends along the outer circumferential surface.