Abstract:
Disclosed herein is a traveling-wave Mach-Zehnder modulator and method of operating same that advantageously exhibits a reduced optical insertion loss as compared with contemporary Mach-Zehnder structures. Such advantage comes at the modest expense of increased modulator length and increased RF loss.
Abstract:
An optical modulator element includes first and second optical modulators, an optical input terminal, and a branch coupler. Each of the first and second optical modulators includes a pair of Mach-Zehnder waveguides, a first optical coupler to split rays from the branch coupler into the pair of Mach-Zehnder waveguides, and a second optical coupler to combine rays transmitted through the pair of Mach-Zehnder waveguides. The first and second optical modulators are disposed in such a manner that a traveling direction of rays propagating through the pair of Mach-Zehnder waveguides of the first optical modulator and a traveling direction of rays propagating through the pair of Mach-Zehnder waveguides of the second optical modulator are angled toward each other.
Abstract:
Provided is an optical-waveguide-element module in which a common connecting substrate is used for different optical waveguide elements and deterioration of the propagation characteristics of electrical signals in a curved section of a signal electrode is suppressed. A control electrode in an optical waveguide element is consisted of a signal electrode SL and ground electrodes GD which put the signal electrode therebetween, a connecting substrate is provided with a signal line SL1 (SL2) and ground lines GD1 (GD2) which put the signal line therebetween, the signal electrode and the signal line, and, the ground electrodes and the ground lines are respectively connected to each other using wires (WR1, WR2, and WR20 to WR22) , the control electrode in which a space W1 between the ground electrodes GD at an input end or an output end of the control electrode is wider than a space W2 between the ground lines GD1 (GD2) on the optical waveguide element side in the connecting substrate, has a portion in which the space between the ground electrodes GD forms a space W3 which is narrower than the space W2 in a portion away from the input end or the output end, furthermore, the signal electrode SL in the control electrode has a curved section in a place from the input end or the output end to an operating part in which the control electrode applies an electric field to the optical waveguide, and suppression means (WR20 to WR32) for suppressing generation of a local potential difference between the ground electrodes which put the signal electrode therebetween in the curved section of the signal electrode is provided.
Abstract:
Methods, systems, and apparatus, including a photonic integrated circuit package, including a photonic integrated circuit chip, including an active optical element; an electrode configured to receive an electrical signal; a ground electrode; and a bond contact electrically coupled to the electrode; and an ASIC chip including circuitry configured to provide the electrical signal; and a bond contact that is electrically coupled to the circuitry; an bridge chip bonded to at least a portion of the photonic integrated circuit chip and at least a portion of the ASIC chip.
Abstract:
Methods, systems, and apparatus, including a photonic integrated circuit package, including a photonic integrated circuit chip, including multiple electrodes configured to receive the electrical signal, where at least one characteristics of a segment of the traveling wave active optical element is changed based on the electrical signal received by a corresponding electrode of the multiple electrodes; a ground electrode; and multiple bond contacts; and an interposer bonded to at least a portion of the photonic integrated circuit chip, the interposer including a conductive trace formed on a surface of the interposer, the conductive trace electrically coupled to a source of the electrical signal; a ground trace; and multiple conductive vias electrically coupled to the conductive trace, where each conductive via of the multiple conductive vias is bonded with a respective bond contact of the multiple bond contacts of the photonic integrated circuit chip.
Abstract:
A boundary surface (12S) which divides a rib (12) of a rib-slab type core (11) into a p-type semiconductor region (12a) and an n-type semiconductor region (12b) is constituted by a first flat surface (S1) serving as a junction surface of a first lateral p-n junction (J1), a second flat surface (S2) serving as a junction surface of a vertical p-n junction (J2), and a third flat surface (S3) serving as a junction surface of a second lateral p-n junction (J3).
Abstract:
A distributed traveling-wave Mach-Zehnder modulator driver having a plurality of modulation stages that operate cooperatively (in-phase) to provide a signal suitable for use in a 100 Gb/s optical fiber transmitter at power levels that are compatible with conventional semiconductor devices and conventional semiconductor processing is described.
Abstract:
An electro-optical modulator device is provided. The electro-optical modulator device comprises at least one electro-optical modulator having a first and a second optical waveguide and an electrode arrangement for applying a voltage across the optical waveguide, wherein the electrode arrangement comprises a plurality of first waveguide electrodes and a plurality of second waveguide electrodes arranged on top of the first and the second optical waveguide, respectively, wherein the first and second waveguide electrodes are capacitively coupled to one another; and at least one driver unit for supplying a voltage to the electrode arrangement; and an electrical connection between the driver unit and the electrode arrangement. The electrical connection between the driver unit and the electrode arrangement comprises a flexible coplanar strip line.
Abstract:
Mach-Zehnder optical modulators and IQ modulators based on a series push-pull travelling wave electrode are provided. The modulator includes a conductive backplane providing an electrical signal path. One or more voltage control taps are electrically connected to the conductive backplane within an area underneath the travelling wave electrode and provide an equalizing DC control voltage to the conductive backplane. In other variants, a plurality of conductive backplane segments are provided, and at least one voltage control tap is electrically connected to each conductive backplane segment within an area underneath the travelling wave electrode and provides a DC control voltage to the corresponding conductive backplane segment.
Abstract:
A Mach-Zehnder optical modulator with a series push-pull traveling wave electrode uses a balanced coplanar stripline with lateral ground planes. Two signal electrodes extend along the center of the optical modulator adjacent and parallel to the optical waveguides in a series push-pull configuration. The ground planes run parallel to the signal electrodes, but are spaced laterally outward from the signal electrodes.