Abstract:
The invention relates to a method for preparing 6-aminocaproic acid (hereinafter also referred to as ‘6-ACA’) using a biocatalyst. The invention further relates to a method for preparing e-caprolactam (hereafter referred to as ‘caprolactam’) by cyclising such 6-ACA. The invention further relates to a host cell, a micro-organism, or a polynucleotide which may be used in the preparation of 6-ACA or caprolactam.
Abstract:
The present invention generally relates to processes for the conversion of glucose to caprolactam employing chemocatalytic oxidation and reduction reactions. The present invention also includes processes for the conversion of glucose to caprolactam via amido polyhydroxy acid products and amidocaproic acid or derivatives thereof. The present invention also includes processes that catalytically oxidize an amidopolyol to amidopolyhydroxy acid or derivatives thereof, and processes that catalytically hydrodeoxygenate amino or amido polyhydroxy acid or derivatives thereof to an amino or amidocaproic acid product. The amino or amidocaproic acid product may then be converted to caprolactam. The present invention also includes products produced by such processes and products producable from such products.
Abstract:
Catalytic processes for preparing caprolactam, pipecolinic acid, and their derivatives, from lysine or alpha-amino-epsilon-caprolactam starting materials, and products produced thereby. A process for preparing caprolactam or a derivative thereof, the process comprising contacting a reactant comprising lysine or alpha aminocaprolactam with a catalyst and a gas comprising hydrogen gas, in the presence of a solvent. The catalyst may be provided on a support material, such as a transition metal.
Abstract:
The invention relates to a method for preparing ε-caprolactam comprising deacylating N-acyl-6-aminocaproic acid and forming ε-caprolactam. The deacylation may be carried out chemically or biocatalytically. The invention further relates to a host cell, comprising a recombinant vector comprising a nucleic acid sequence encoding an enzyme capable of catalysing the formation of 6-aminocaproic acid from N-acyl-6-aminocaproic acid.
Abstract:
The present invention relates to methods of making a cyclic amide. The methods include the step of heating a fermentation broth in a manner effective to produce a cyclic amide, wherein the fermentation broth includes an amino acid or salt thereof. The cyclic amide monomers can be polymerized in a manner effective to form a polyamide. One advantage of the present invention is that lysine and/or salt thereof can be heated to form α-amino-ε-caprolactam while the lysine is still in the fermentation broth. The lysine and/or salt thereof do not need to be purified from the fermentation broth prior to being heated to form α-amino-ε-caprolactam. For example, the fermentation broth does not need to be subjected to an ion exchange process prior to being heated to form α-amino-ε-caprolactam. Avoiding such an ion exchange process can substantially reduce manufacturing costs.
Abstract:
The invention relates to a method for preparing 6-aminocaproic acid (hereinafter also referred to as ‘6-ACA’) using a biocatalyst. The invention further relates to a method for preparing e-caprolactam (hereafter referred to as ‘caprolactam’) by cyclising such 6-ACA. The invention further relates to a host cell, a micro-organism, or a polynucleotide which may be used in the preparation of 6-ACA or caprolactam.
Abstract:
The disclosure relates to a process for purifying crude caprolactam. The process involves converting a first mixture of 6-amino capronitrile and water to a second mixture of caprolactam ammonia, water, high boilers and low boilers using a catalyst. The ammonia is removed from the second mixture to obtain a third mixture. Water is removed from the third mixture to give crude caprolactam, high boiler and low boilers. Purified caprolactam is then obtained by a series of distillation steps.
Abstract:
A method and a plant are disclosed for purifying lactams, particularly lactams obtained by cyclizing hydrolysis of aminonitrile. The purification of ε-caprolactam obtained by cyclizing hydrolysis of aminocapronitrile is described which includes eliminating the ammonia from the reaction medium of the hydrolysis, then recovering the lactam from said medium in purified form. The recovery is carried out by performing at least a distillation of the lactam in the presence of a base producing optionally a fronts fraction comprising compounds more volatile than the lactam, a fraction comprising the lactam to be recovered to the degree of desired purity and a distillation tails comprising the lactam and compounds less volatile than the lactam. The distillation tails are treated by various processes such as evaporation in thin layers to recover the major part of the caprolactam and recycling the latter in the purification process. The method and plant enables a high rate of recovery of the caprolactam contained in the hydrolysis medium, while observing required criteria of purity.
Abstract:
A process for the manufacture of a lactam from an amino alkane nitrile and/or its hydrolysis derivatives, comprising reacting a solution comprising at least about 5% by weight amino alkane nitrile in water at a temperature of greater than or equal to about 350° C. and at a pressure of greater than about 250 bar. Optionally, a dilute acid may be added as a catalyst.
Abstract:
The invention relates to a process for the preparation ε-caprolactam starting from 6-aminocapronitrile by hydrolysis/oligomerisation followed by de-oligomerisation/cyclisation using superheated steam characterized in that the hydrolysis/oligomerisation is performed with superheated steam converting 6-aminocapronitrile into a molten phase and a gas phase comprising ammonia, ammonia is continuously separated off and the de-oligomerisation/cyclisation is performed by treating the molten phase further with superheated steam. The invention also relates to a process for the preparation of ε-caprolactam starting from 6-aminocapronitrile by hydrolysis/oligomerisation followed by de-oligomerisation/cyclisation characterized in that the preparation is performed in a horizontal scraped-surface reactor, the hydrolysis/oligomerisation is performed with superheated steam converting 6-aminocapronitrile into a molten phase and a gas phase comprising ammonia, ammonia is continuously separated off and the de-oligomerisation/cyclisation is performed by treating the molten phase further with superheated steam.