Abstract:
Disclosed are catalysts comprised of platinum and gold. The catalysts are generally useful for the selective oxidation of compositions comprised of a primary alcohol group and at least one secondary alcohol group wherein at least the primary alcohol group is converted to a carboxyl group. More particularly, the catalysts are supported catalysts including particles comprising gold and particles comprising platinum, wherein the molar ratio of platinum to gold is in the range of about 100:1 to about 1:4, the platinum is essentially present as Pt(0) and the platinum-containing particles are of a size in the range of about 2 to about 50 nm. Also disclosed are methods for the oxidative chemocatalytic conversion of carbohydrates to carboxylic acids or derivatives thereof. Additionally, methods are disclosed for the selective oxidation of glucose to glucaric acid or derivatives thereof using catalysts comprising platinum and gold. Further, methods are disclosed for the production of such catalysts.
Abstract:
The present invention generally relates to processes for the chemocatalytic conversion of a glucose source to an adipic acid product. The present invention includes processes for the conversion of glucose to an adipic acid product via glucaric acid or derivatives thereof. The present invention also includes processes comprising catalytic oxidation of glucose to glucaric acid or derivative thereof and processes comprising the catalytic hydrodeoxygenation of glucaric acid or derivatives thereof to an adipic acid product. The present invention also includes products produced from adipic acid product and processes for the production thereof from such adipic acid product.
Abstract:
Lactams, notably ε-caprolactam, are prepared from alkyl cyanovalerates, themselves obtained from unsaturated nitrile compounds, by contacting same, in gaseous state, with hydrogen in the presence of hydrogenation/cyclization catalysts, and then condensing the gas stream thus formed, without intermediate separation of any alkyl aminocaproate, and recovering lactam produced therefrom.
Abstract:
A method and a plant are disclosed for purifying lactams, particularly lactams obtained by cyclizing hydrolysis of aminonitrile. The purification of ε-caprolactam obtained by cyclizing hydrolysis of aminocapronitrile is described which includes eliminating the ammonia from the reaction medium of the hydrolysis, then recovering the lactam from said medium in purified form. The recovery is carried out by performing at least a distillation of the lactam in the presence of a base producing optionally a fronts fraction comprising compounds more volatile than the lactam, a fraction comprising the lactam to be recovered to the degree of desired purity and a distillation tails comprising the lactam and compounds less volatile than the lactam. The distillation tails are treated by various processes such as evaporation in thin layers to recover the major part of the caprolactam and recycling the latter in the purification process.
Abstract:
A process for removing high boilers from crude caprolactam which comprises high boilers, caprolactam and in some cases low boilers, and which has been obtained by a) reacting 6-aminocapronitrile with water to give a reaction mixture b) removing ammonia and unconverted water from the reaction mixture to obtain crude caprolactam, which comprises c) feeding the crude caprolactam to a distillation apparatus to obtain a first substream via the top as a product and a second substream via the bottom, by setting the pressure in the distillation in such a way that the bottom temperature does not go below 170° C., and adjusting the second substream in such a way that the caprolactam content of the second substream is not less than 10% by weight, based on the entire second substream.
Abstract:
Bidentate ligand of formula (I), R1R2M1-R-M2R3R4 wherein M1 and M2 each indenpendently represent P, As or Sb; R1, R2, R3 and R4 each independently represent the same or a different optionally substituted organic group and at least one of R1, R2, R3 and R4 contains a tertiary carbon atom through which the group is linked to M1 or M2; and R represents a bridging group based on a trimethylene group connecting M1 and M2 of which the middle carbon atom is double bonded to a non-metal element chosen from group 14, 15 or 16 of the periodic table of elements. Catalyst comprising this bidentate ligand and carbonylation process n which this catalyst is used.
Abstract:
Lactams, in particular ε-caprolactam, are produced by the hydrolytic cyclization of aminonitriles, in particular 6-aminocapronitrile, in the vapor phase in a plurality of adiabatic fixed bed reaction zones arranged in succession wherein at least a portion of the heat of the exothermic reaction is removed between each of the successive reaction zones. Conducting the reaction in such a manner requires less capital for the reactor itself. It has also been found that the product exiting such a reaction system can be directly fed to a distillation unit without the need of additional cooling or storing.
Abstract:
A process for distillative removal of ammonia from solutions (I) which include a lactam and ammonia comprises effecting said removal in a distillation apparatus (a) at an absolute pressure of less than 10 bar.
Abstract:
The present invention provides methods for making N-methylpyrrolidine and analogous compounds via hydrogenation. Novel catalysts for this process, and novel conditions/yields are also described. Other process improvements may include extraction and hydrolysis steps. Some preferred reactions take place in the aqueous phase. Starting materials for making N-methylpyrrolidine may include succinic acid, N-methylsuccinimide, and their analogs.