Abstract:
In a cloud computing environment, a server application hosted by a server may form a plurality of guilds by clustering multiple network terminals of similar performance together. The server application may then allocate computing resources to the guilds accordingly.
Abstract:
Technologies are described herein for allocating pages in a flash memory. Some example technologies may receive multiple data elements and a write request to write the multiple data elements to the flash memory. Example technologies may identify a correlation between a subset of the data elements based on correlation criteria. Example technologies may allocate neighboring pages of the flash memory for storing the subset of the data elements. Example technologies may write the subset of the data elements into the allocated pages.
Abstract:
Food additives and food packaging materials having phase change materials are provided. Examples of phase change materials include gallic acid esters, tannic acid esters, fulvic acid, chitosan esters, hemicellulose derived esters, and the like. Methods of making and using the same are also provided.
Abstract:
Technologies are generally described for a resource allocation scheme for wireless communications. In some examples, a radio base station configured to communicate with one or more mobile devices may include a speed detection unit configured to detect moving speeds of the one or more mobile devices relative to a position of the radio base station; a resource allocation unit configured to allocate frequencies of one or more subcarriers based on the moving speeds of the one or more mobile devices; and a radio communication unit configured to communicate with the one or more mobile devices using the allocated frequencies of the one or more subcarriers.
Abstract:
Methods, systems, caps, containers, and assemblies for a gecko-like container capping system are described. A gecko-like cap configured to cover an opening in a container may include an inner surface configured to mate with an opening surface of a container. Setae may be located on a surface of the cap and/or a surface of the container that are configured to oppose movement of the cap away from the container by creating an adhesion force between the inner surface and the opening surface. The cap may include one or more release mechanisms configured to deflect the inner surface away from the opening surface, thereby reducing the adhesion force such that the cap is removable from the container.
Abstract:
Technologies are generally described for systems, devices and methods effective to allow a network element to retrieve a control command. In some examples, a network controller device may associate an identifier with the control command. The network controller device may send the identifier and the associated control command over a first network with a first level of security to a computing device. The network controller device may send an activation signal to the network element over a second network with a second level of security different from the first level of security. The network controller device may send the identifier to the network element over the second network. The identifier may be effective to allow the network element to retrieve the control command.
Abstract:
Technology is disclosed for enabling scene-based variable compression (“the technology”). In some embodiments, the technology can receive an indication of a compression level for a first content type, wherein the compression level specifies a tolerance level for lossy compression; receive a request for content, the content having at least two portions, wherein a first portion has first content of the first content type and the second portion has second content of a second content type, a first compression method associated with the indicated compression level and a second compression method associated with a different compression level. The technology can transmit the content, wherein the first portion of the content was compressed using the first compression method and the second portion was compressed using the second compression method.
Abstract:
Technologies related to virtual machine switching based on measured network delay are generally described. A network delay aware Virtual Machine (VM) may be configured to adapt a Virtual Machine Manager (VMM) to delay switching back to the network delay aware VM by a delay amount determined using a measured network delay. The measured network delay may comprise a delay between sending a network communication and receiving a network response. By delaying switching back to the network delay aware VM, additional processing resources are freed for other VMs managed by the VMM, thereby increasing efficiency of computing devices including network delay aware VMs, and correspondingly increasing efficiency of data centers including such computing devices.
Abstract:
In an example embodiment, a transmitter of a wireless communication device may incrementally increase a level of transmit power by a predefined amount, based on a channel quality indicator, up to a limited maximum level of transmit power to control the peak transmit power and further may control the Peak-to-Average Power Ratio (PAPR).
Abstract:
Technologies are generally provided for a system to enhance security and prevent side channel attacks of targeted functions. Side channel attacks assume that the targeted functions operate at same speed each time, and observe timing data of the targeted functions to glean secure information. According to some examples, an enhanced security system may alter a processing speed of one or more subunits of a processor executing the targeted function(s) to transparently change an instantaneous performance of the processor in an unpredictable manner. The performance time of the targeted function(s) may thereby be randomized. A virtual machine manager (VMM) may identify a security risk for a targeted function, and trigger one or more subunits of the processor to operate at a reduced frequency. After completion of the targeted function, the subunits may be returned to a default performance speed.