Abstract:
A semiconductor memory device includes a controller, a plurality of substrates, and a plurality of stacked memories that are spaced apart and sequence on each of the substrates. Each of the stacked memories includes an interface chip that is connected to the respective substrate and a plurality of memory chips that are stacked on the interface chip. The controller is configured to control the stacked memories. The interface chips are configured to forward a command signal from the controller through each interface chip in the sequence of stacked memories that is intervening between the controller and a selected stacked memory to which the command signal is directed. The interface chips may forward the command signal from one end of the sequence of the stacked memories on one of the substrates to the selected stacked memory, and forward a response signal from the selected stacked memory through the remaining stacked memories in the sequence on the substrate back to the controller or through the same sequence of stacked memories that was taken by the command signal.
Abstract:
A memory system including a memory controller and a memory and a related method are disclosed. The method includes communicating a command and error detection/correction (EDC) data associated with the command from the memory controller to the memory, decoding the command and executing an EDC operation related to the EDC data in parallel, and if the command is a write command, delaying execution of a write operation indicated by the write command until completion of the EDC operation, else immediately executing an operation indicated by the command without regard to completion of the EDC operation.
Abstract:
A memory system, memory, and memory system command protocol are disclosed. Within the memory system, a memory controller communicates a command to the memory, the command being selected from a set of commands including a write command and a plurality of non-write commands. A Hamming distance value calculated between a digital value indicating the write command and a digital value indicating any one of the plurality of non-write commands is greater than 1.
Abstract:
A memory system including a memory controller and a memory and a related method are disclosed. The method includes communicating a command and error detection/correction (EDC) data associated with the command from the memory controller to the memory, decoding the command and executing an EDC operation related to the EDC data in parallel, and if the command is a write command, delaying execution of a write operation indicated by the write command until completion of the EDC operation, else immediately executing an operation indicated by the command without regard to completion of the EDC operation.
Abstract:
A memory system including a memory controller and a memory and a related method are disclosed. The method includes communicating a command and error detection/correction (EDC) data associated with the command from the memory controller to the memory, decoding the command and executing an EDC operation related to the EDC data in parallel, and if the command is a write command, delaying execution of a write operation indicated by the write command until completion of the EDC operation, else immediately executing an operation indicated by the command without regard to completion of the EDC operation.
Abstract:
The bit-line sense amplifier includes a driving-voltage control circuit and an amplifier. The driving-voltage control circuit generates a first test driving voltage having a voltage level of a pre-charge voltage, a second test driving voltage having a voltage level of a pre-charge voltage added by a voltage difference between a bit-line and a complementary bit-line, and a third test driving voltage having a voltage level of a pre-charge voltage subtracted by the voltage difference in a test mode. The amplifier senses and amplifies a voltage difference between the bit-line and the complementary bit-line.
Abstract:
A memory device comprises a memory cell array comprising a plurality of memory blocks each comprising a plurality of memory cells and a control setting circuit. The control setting circuit divides the memory blocks into at least first and second groups based on whether each of the memory blocks comprises at least one substandard memory cell, and sets individually control parameters of the first and second groups. The substandard memory cells are identified based on test results of the memory cells with respect to at least one of the control parameters. Each memory block in the first group comprises at least one substandard memory cell, and each memory block in the second group comprises no substandard memory cell.
Abstract:
A multi memory chip stacked on a multi core CPU includes a plurality of memories, each memory corresponding to a CPU core from among the CPU cores and being configured to directly transmit data between the other memories of the multi memory chip.
Abstract:
A memory module and a related memory system are disclosed. The memory module comprises a semiconductor memory having a data output buffer, a data input buffer, a command/address input buffer and a first termination resistor unit connected to a data bus. The memory module further comprises a second termination resistor unit connected to an internal command/address bus. First and second termination resistor units are preferably of different resistive value and/or type.
Abstract:
A semiconductor memory module includes a memory module board having at least one semiconductor memory device. The semiconductor memory device includes a data input buffer that receives data and a first reference voltage via first and second input terminals, a command/address buffer that receives a command/address signal and a second reference voltage via first and second input terminals, and a first termination resistor unit connected to the first input terminal of the data input buffer. The semiconductor memory module further includes a second termination resistor unit located on the memory module board and connected to an internal command/address bus. The first termination resistor unit includes a first resistor connected between a first voltage source and the first input terminal of the data input buffer, and the second termination resistor unit includes a second resistor connected between a second voltage source and the first input terminal of the command/address input buffer.