Abstract:
A method of fabricating a feature on a substrate is disclosed. In a described embodiment the feature is the gate electrode of an MOS transistor. In this embodiment a polysilicon layer is formed on the substrate. Next, an edge definition layer of silicon nitride is formed on the feature layer. Then, a patterned edge definition layer of silicon dioxide is formed on the first edge definition layer. Then, a silicon nitride spacer is formed adjacent to an edge of the patterned second edge definition layer. Finally, the polysilicon layer is etched, forming the transistor gate electrode from the polysilicon that remains under the spacer.
Abstract:
A method of fabricating a feature on a substrate is described. In one embodiment, the fabricated feature is the gate electrode of an MOS transistor. A feature layer is formed on the substrate with a patterned edge definition layer then formed on the feature layer. Next, a spacer layer is formed adjacent to an edge of the patterned edge definition layer. Finally, the feature layer is etched, forming the transistor gate electrode from the feature layer that remains under the spacer.
Abstract:
A point cloud attribute encoding method and apparatus, decoding method and apparatus are disclosed. The point cloud attribute encoding method includes: sorting point cloud data to be encoded to obtain sorted point cloud data; constructing a multilayer structure based on the sorted point cloud data and distances between the sorted point cloud data; obtaining an encoding mode corresponding to each of nodes in the multilayer structure. The encoding mode corresponding to each of the nodes is a direct encoding mode, a predictive encoding mode, or a transform encoding mode. The predictive encoding mode is to encode a node based on information of a neighboring node corresponding to the node. The transform encoding mode is to encode the node based on a transform matrix; and encoding point cloud attributes for each of the nodes based on the multilayer structure and the respective encoding mode.
Abstract:
Disclosed is a method and system for achieving optimal separable convolutions, the method is applied to image analyzing and processing and comprises steps of: inputting an image to be analyzed and processed; calculating three sets of parameters of a separable convolution: an internal number of groups, a channel size and a kernel size of each separated convolution, and achieving optimal separable convolution process; and performing deep neural network image process. The method and system in the present disclosure adopts implementation of separable convolution which efficiently reduces a computational complexity of deep neural network process. Comparing to the FFT and low rank approximation approaches, the method and system disclosed in the present disclosure is efficient for both small and large kernel sizes and shall not require a pre-trained model to operate on and can be deployed to applications where resources are highly constrained.
Abstract:
An on-chip wavefront sensor, an optical chip, and a communication device are disclosed. The on-chip wavefront sensor includes an antenna array configured for separating received spatial light to obtain a plurality of sub-light spots; a reference light source module configured for generating a plurality of intrinsic light beams; a phase shifter array configured for performing phase shifting processing on the intrinsic light beams to obtain reference light; and an optical detection module configured for performing coherent balanced detection according to the reference light and the sub-light spots to obtain a photocurrent corresponding to each of the sub-light spots.
Abstract:
Disclosed are a many-to-many laser communication networking device and a method. The device includes: an optical field array control module, a transceiver lens array module, an array phase detection module, an array characteristic splitting module, a beam switching array module and a signal transmission module. The optical field array control module is configured to receive a plurality of beams of laser light with different angles, and adjust the corresponding angle of the laser. The transceiver lens array module is configured to convert the angle-adjusted laser into beams of second optical fiber light. The array characteristic splitting module is configured to analyze the second optical fiber light to obtain the second characteristic information. The beam switching array module is configured to control the second optical fiber light to be demodulated into baseband signals via a first path or to be forwarded via a second path according to the second characteristic information.
Abstract:
The present invention discloses a disparity estimation optimization method based on upsampling and exact rematching, which conducts exact rematching within a small range in an optimized network, improves previous upsampling methods such as neighbor interpolation and bilinear interpolation for disparity maps or cost maps, and works out a propagation-based upsampling method by the way of network so that accurate disparity values can be better restored from disparity maps in the upsampling process.
Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may detect a radio link failure between the UE and a master node of a dual-connectivity configuration. The UE may transmit, to a secondary node in the dual-connectivity configuration, an indication that the radio link failure has occurred. The secondary node may receive the indication of a radio link failure and transmit the indication of the radio link failure to the master node of the dual-connectivity configuration. The master node may identify a target node for the UE and perform a handover procedure of the UE from the master node to the target node.
Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) measure and report cell measurements for neighboring cells to assist the wireless network with handover decisions. In some cases, the UE may be configured to report beam-level measurements for just a subset of neighboring cells instead of each neighboring cell. For example, the UE may measure, or report beam measurements for a subset of the neighboring cells which meet configured criteria or are included in a subset of cells configured by the serving cell. Techniques for configuring and maintaining the subset of cells are described herein. For example, the cells in the subset may be configured by the UE or the serving cell of UE. A cell may also be removed from the subset if the cell does not continue to meet criteria for being included in the subset.
Abstract:
Methods, systems, and devices for wireless communication are described. In some wireless systems, a user equipment (UE) may access a network or cell using a random access (RACH) procedure. A base station may allocate dedicated RACH resources and common RACH resources for the UE to transmit a RACH preamble message on and may convey a configuration for the UE. In some cases, the UE may perform multiple transmissions of the RACH preamble message in the dedicated RACH resources, and based on the configuration may determine whether to perform a single or multiple transmissions of the RACH preamble message in the common RACH resources. The UE may transmit the messages using the same or different uplink transmit beams, and the base station may receive the messages using the same or different uplink reception beams. These multiple transmissions may reduce latency and improve reliability of the RACH procedure.