摘要:
Approaches herein decrease nanosheet gate length variations by implanting a gate layer material with ions prior to etching. A method may include forming a dummy gate structure over a nanosheet stack, the dummy gate structure including a hardmask atop a gate material layer, and removing a portion of the hardmask to expose a first area and a second area of the gate material layer. The method may further include implanting the dummy gate structure to modify the first and second areas of the gate material layer, and etching the first and second areas of the gate material layer to form a treated layer along a sidewall of a third area of the gate material layer, wherein the third area is beneath the hardmask.
摘要:
A system for performing a sidewall image transfer process includes a substrate processing chamber configured to process a substrate including a mandrel layer. A controller is configured to control the substrate processing chamber to, without the substrate being removed from the within the substrate processing chamber, etch the mandrel layer, subsequent to etching the mandrel layer, deposit a thin spacer layer on upper surfaces of the plurality of mandrels, sidewalls of the plurality of mandrels, and portions of the substrate between the sidewalls, subsequent to depositing the thin spacer layer, etch the thin spacer layer to remove the thin spacer layer such that only the thin spacer layer formed on the sidewalls of the plurality of mandrels remains and, subsequent to etching the thin spacer layer, etch the mandrels such that only the thin spacer layer formed on the sidewalls of the plurality of mandrels remains on the substrate.
摘要:
The present disclosure provides a semiconductor structure, including a semiconductor fin, a metal gate over the semiconductor fin, and a sidewall spacer composed of low-k dielectric surrounding opposing sidewalls of the metal gate. A portion of the sidewall spacer comprises a tapered profile with a greater separation of the opposing sidewalls toward a top portion and a narrower separation of the opposing sidewalls toward a bottom portion of the sidewall spacer. The present disclosure also provides a method of manufacturing a semiconductor device. The method includes forming a polysilicon stripe over a semiconductor fin, forming a nitride sidewall spacer surrounding a long side of the polysilicon stripe, forming a raised source/drain region in the semiconductor fin, and forming a carbonitride etch stop layer surrounding the nitride sidewall spacer.
摘要:
Methods of forming a semiconductor device include laterally etching a dummy gate to recess the dummy gate underneath a spacer layer, such that the spacer layer overhangs the dummy gate. A sidewall of the dummy gate is nitridized. The dummy gate is etched away without removing the nitridized sidewall.
摘要:
In a method of manufacturing an SRAM device, an insulating layer is formed over a substrate. First dummy patterns are formed over the insulating layer. Sidewall spacer layers, as second dummy patterns, are formed on sidewalls of the first dummy patterns. The first dummy patterns are removed, thereby leaving the second dummy patterns over the insulating layer. After removing the first dummy patterns, the second dummy patterns are divided. A mask layer is formed over the insulating layer and between the divided second dummy patterns. After forming the mask layer, the divided second dummy patterns are removed, thereby forming a hard mask layer having openings that correspond to the patterned second dummy patterns. The insulating layer is formed by using the hard mask layer as an etching mask, thereby forming via openings in the insulating layer. A conductive material is filled in the via openings, thereby forming contact bars.
摘要:
An electronic device can include a semiconductor layer, an insulating layer overlying the semiconductor layer, and a conductive electrode. In an embodiment, a first conductive electrode member overlies the insulating layer, and a second conductive electrode member overlies and is spaced apart from the semiconductor layer. The second conductive electrode member has a first end and a second end opposite the first end, wherein each of the semiconductor layer and the first conductive electrode member are closer to the first end of the second conductive electrode member than to the second end of the second conductive electrode member. In another embodiment, the conductive electrode can be substantially L-shaped. In a further embodiment, a process can include forming the first and second conductive electrode members such that they abut each other. The second conductive electrode member can have the shape of a sidewall spacer.
摘要:
The present disclosure provides a method for forming an integrated circuit (IC) structure. The method includes providing a metal gate (MG), an etch stop layer (ESL) formed on the MG, and a dielectric layer formed on the ESL. The method further includes etching the ESL and the dielectric layer to form a trench. A surface of the MG exposed in the trench is oxidized to form a first oxide layer on the MG. The method further includes removing the first oxide layer using a H3PO4 solution.
摘要:
A semiconductor device that includes a gate structure on a channel region of a semiconductor device. Source and drain regions may be present on opposing sides of the channel region. The semiconductor device may further include a composite gate sidewall spacer present on a sidewall of the gate structure. The composite gate sidewall spacer may include a first composition portion having an air gap encapsulated therein, and a second composition portion that is entirely solid and present atop the first composition portion.
摘要:
A method of performing a sidewall image transfer (SIT) process includes arranging a substrate within a substrate processing chamber, wherein the substrate includes a mandrel layer formed on the substrate and etching the mandrel layer to form a plurality of mandrels. The method further includes, without removing the substrate from within the substrate processing chamber and subsequent to etching the mandrel layer, depositing a thin spacer layer such that the thin spacer layer is formed on upper surfaces of the plurality of mandrels, sidewalls of the plurality of mandrels, and portions of the substrate between the sidewalls of the plurality of mandrels, subsequent to depositing the thin spacer layer, etching the thin spacer layer to remove the thin spacer layer from the upper surfaces of the mandrels and the portions of the substrate between the sidewalls of the plurality of mandrels such that only the thin spacer layer formed on the sidewalls of the plurality of mandrels remains, and, subsequent to etching the thin spacer layer from the upper surfaces of the mandrels and the portions of the substrate between the sidewalls of the plurality of mandrels, etching the plurality of mandrels to remove the plurality of mandrels from the substrate such that only the thin spacer layer formed on the sidewalls of the plurality of mandrels remains on the substrate.
摘要:
A method of making a semiconductor device includes forming a gate covered by a hard mask over a substrate; disposing a mask over the gate and the hard mask; patterning the mask to expose a portion of the gate and the hard mask; cutting the gate and hard mask to form two shorter gates, each of the two shorter gates having an exposed end portion; undercutting the exposed end portion of at least one of the two shorter gates to form an overhanging hard mask portion over the exposed end portion; and forming spacers along a gate sidewall and beneath the overhanging hard mask portion.