Abstract:
A heat pump is provided with a method and control for eliminating flooded starts. In particular, the heat pump at start-up is operated for a short period of time in the opposite mode to that in which it had been operated before the previous shutdown. In this way, the compressor ingestion of liquid refrigerant is limited or completely eliminated. After a short period of time, the heat pump is moved back to the intended mode of operation. Additional features can be added to the control scheme to limit this type of operation at start-up only to certain ambient conditions or only to a prolonged period between shutdown and start-up.
Abstract:
There is provided a refrigerant system including a plurality of components for regulating operational parameters of the refrigerant system, at least one transducer connected to the refrigerant system for monitoring the operational parameters of the refrigerant system, and a controller. The controller is remotely connected to the at least one transducer and to at least one component of the plurality of components for at least periodically receiving parameter information from the at least one transducer to monitor the operational parameters and determine, based on variations in at least one parameter of the operational parameters, whether a condition exists in the refrigerant system that requires corrective action. The corrective action may include moving the refrigerant system to a lighter mode of operation by unloading or even shutting down some of the refrigerant system components. There is also provided a method for monitoring the refrigerant system.
Abstract:
A heat pump system operates in heating and cooling modes. The heat pump is provided with both a reheat function and economizer circuit. The economizer circuit provides augmented performance to the heat pump, while the reheat coil allows enhanced control over temperature and humidity of the air supplied to the conditioned space. A bypass line around an outdoor heat exchanger is also provided to achieve additional flexibility of control for a sensible heat ratio. Selective operation of the abovementioned components and subsystems allows precise control over system operation parameters and hence satisfaction of a wide spectrum of sensible and latent load demands and improved reliability.
Abstract:
A controller for an HVAC & R system is provided with the Internet connection to weather forecast information. The weather forecast information is utilized by the controller to take proactive steps in system operation and control. As an example, should the weather forecast information indicate that temperatures will be rising dramatically the next day, the controller may take the proactive step of increasing cooling in the conditioned space during the nighttime. In this manner, when the ambient temperature begins to rise the next day, the cooling load on the HVAC & R system components will be lower. Analogous proactive steps can be taken regarding humidity and fresh air circulation rate within the conditioned space. The present invention not only provides more prompt tailoring of the conditions within an environment to desired conditions, but also does so in a more efficient and less expensive manner
Abstract:
A refrigerant system (20) is provided with an enlarged chamber (32) that provides the functions of both an oil separator and a muffler. The chamber includes an oil return line (34) that returns separated oil back to a compressor. The chamber further includes at least one sound-deadening feature such that the chamber will also deaden the sound caused by the compressed refrigerant as it moves downstream from the compressor towards the condenser. In one embodiment, the sound-deadening feature is a torturous path (40) for the compressor discharge flow. In another embodiment, the sound-deadening feature is a sound-deadening material (52) formed within the chamber. Additional oil separation features may include an oil retention mesh (36) or a cyclone structure (102).
Abstract:
A scroll compressor system having a variable speed drive is utilized. By providing the economizer and/or bypass functions along with the variable speed drive, precise capacity adjustment between the discrete steps is achieved to exactly match load demands at a wide spectrum of operating conditions.
Abstract:
A multi-circuit refrigerant system includes a plurality of circuits that are provided with distinct refrigerants. A control selectively matches a sensed environmental space conditioning challenge to selectively engage the plurality of circuits.
Abstract:
A variable speed drive is provided for a compressor in a refrigerant system. When a low load situation has been determined by the refrigerant system controls, the variable speed drive moves the compressor to a lower speed mode of operation. In this case, if a speed is so low that it cannot ensure adequate oil lubrication of the compressor elements, then the motor speed is periodically increased to a level that will ensure proper lubrication. In this manner, a variable speed drive compressor can be operated at an extremely low speed to precisely match load demand on a refrigerant system. The invention can be extended beyond refrigerant system applications and to any oil-lubricated compressors whose lubrication is speed dependant.
Abstract:
A heat pump is provided with an improvement while switching from heating/cooling mode to a defrost mode. Prior to initiation of a defrost mode, an electronic expansion device is moved to an open position such that refrigerant can migrate between the indoor-outdoor heat exchangers. When the operation of the defrost cycle is initiated, there is a lower likelihood and severity of flooded starts, as the refrigerant, under existing pressure differential at system shutdown, will move to the heat exchanger that will be downstream of the compressor in the defrost mode. Thus, no flooded start will occur on the subsequent compressor start-up. After completion of the defrost cycle, the electronic expansion device is again opened prior to return to operation in the conventional heating/cooling mode. In case subsequent starts are in an identical mode of operation, the electronic expansion valve is kept closed during shutdown to minimize cyclic performance losses.
Abstract:
A refrigerant system heat exchanger is characterized by improved airflow distribution through the use of at least one of the fans operating in the pulse width modulation or variable speed mode. Improved airflow distribution can be used to alleviate the effects of refrigerant maldistribution, enhance heat exchanger performance, prevent compressor flooding and improve comfort in the conditioned space.