Abstract:
A system for transmitting optical power from a first location to a second location. The system includes a first light source at the first location which generates a first light beam. A power converter detects the first light beam at the second location. A first control circuit coupled to the power converter operates a second light source at the second location to generate a return safety light beam after detection of the first light beam. A photodetector detects the return safety light beam at the first location. A second control circuit is coupled between the photodetector and the first light source. The second control circuit detects the presence of the return safety light beam and operates the first light source to generate the first light beam at a first power level prior to detecting the return safety light beam and at a second power level, higher than the first power level, after detecting the return safety light beam.
Abstract:
A pressure transmitter has a pressure sensor coupled to an isolator diaphragm by a fill fluid such as oil. According to the invention, means are provided for measuring the position of the isolator diaphragm and comparing the measured position with an expected position to give an indication of fill fluid leakage. Non-contact arrangements such as capacitive and ultrasonic techniques are disclosed for measuring isolator diaphragm position, as well as contacting arrangements such as switches. The fill fluid loss arrangement can be incorporated into a two-wire transmitter, which transmitter can be made to send a warning signal to a control unit when fill fluid loss is detected.
Abstract:
A remotely powered field instrument comprises a housing with an electronics compartment, a terminal compartment, and a bulkhead separating the electronics compartment from the terminal compartment. A first electrical lead extends through the bulkhead. A mounting plate is secured within the terminal compartment. An interface module is positioned within the terminal compartment and secured to the mounting plate. The interface module comprises an optical connector, an optical-to-electrical converter coupled to the optical connector and a second electrical lead coupled between the optical-to-electrical converter and the first electrical lead.
Abstract:
A barrier device threadably mounts to a cabling aperture on a field mounted transmitter. The field mounted transmitter receives and transmits signals, and is wholly powered by a current loop circuit. The barrier device has a conductive housing with at least a first and a second aperture and a pair of conductors passing through the first aperture of the barrier device, for connecting to a terminal block in the transmitter. A pair of signal terminals, preferably as ring tongue lug, is mounted in the second aperture of the barrier device. The signal terminals are connectable to a handheld communicator, which is used to calibrate, monitor and test the transmitter. A barrier circuit is mounted in the housing and is electrically connected between the signal terminals and the conductors. Signals from the communicator access the terminal block through the barrier circuit, and the barrier circuit limits the power available at the signal terminals. One embodiment of the barrier device has a third aperture directly across from the first aperture. The first aperture threadably connects to the transmitter, so that cabling from the transmitter can pass through a passageway formed between the first and third apertures. Another embodiment has a stub shaped housing, with one end of stub being the first aperture, and the other end being the second aperture. The first aperture threads to the cabling aperture on the transmitter, and the barrier circuit is potted in the stub shaped housing.
Abstract:
A pedestal mount capacitive pressure sensor (10) is supported in a housing (11) and used to sense fluid pressures to provide air pressure data relating to the performance of air vehicles. The capacitive sensor uses a thick base plate (40) on which a diaphragm (48) is mounted. A capacitive electrode (52) is mounted to the diaphragm and pressure deflects the diaphragm to provide an output. The pressure sensor (10) is mounted in an outer housing (11) using a stress isolating pedestal (20).
Abstract:
A process control system controls a process through a control output signal based on a set point and a measured process variable. The process control system includes a control circuit having a set point input, a process variable input and a control output. The control circuit generates the control output signal on the control output as a function of the set point received on the set point input and the measured process variable received on the process variable input. An auto-tuning circuit excites the process, estimates a process model based on a rising dead time, a rising rate-of-change, a falling dead time and a falling rate-of-change in the measured process variable and then tunes the control function to the process based on the process model. The auto-tuning circuit obtains robust results, but is computationally simple such that the circuit can be implemented with hardware or software in low-power and low-memory applications, such as in such in field-mounted control units.
Abstract:
A transmitter in a process control system transmits a pressure over a process control loop. The transmitter includes I/O circuitry, compensation circuitry and an absolute pressure sensor. The I/O circuitry transmits information over the process control loop. Compensation circuitry receives a pressure related signal and responsively controls the I/O circuitry to transmit pressure information on the loop. The absolute pressure sensor includes a cavity which deforms as the sensor deflects in response to an applied pressure. A sensor in the cavity provides the pressure related signal to the compensation circuitry in response to the deformation.
Abstract:
In this invention, a valve positioner receives a setpoint from a master and provides a control pressure to a valve actuator for controlling a valve. A sensing circuit in the positioner senses the position of the valve and the control pressure, and a control circuit in the positioner uses both the sensed pressure and position to provide a command output to a pneumatic section which produces the control pressure. In another embodiment of the invention, a positioner receives a setpoint from a master and provides a control pressure to a valve actuator for controlling a valve. A sensing circuit in the positioner senses the valve position and pneumatics in the positioner provide the control pressure as a function of the sensed position and an output from a control circuit within the positioner. The positioner includes a diagnostic circuit which stores a valve attribute and provides a diagnostic output as a function of the stored valve characteristic and a selected one of the sensed variables. In another embodiment of the invention, a positioner includes a correction circuit for storing a valve attribute affected by one of a set of physical parameters and for receiving a selected one of the set of sensed physical parameters. The correction means compensates a command output from a control circuit as a function of the sensed physical parameter and the stored valve characteristic. In another embodiment, the positioner includes a benchset control circuit which ramps the control pressure between an initial control pressure and a final control pressure and back to the initial control pressure, while sampling specific control pressures and their corresponding positions, in order to provide an output indicating the proper spring preload force on an actuator spring.
Abstract:
In this invention, a valve positioner receives a setpoint from a master and provides a control pressure to a valve actuator for controlling a valve. A sensing circuit in the positioner senses the position of the valve and the control pressure, and a control circuit in the positioner uses both the sensed pressure and position to provide a command output to a pneumatic section which produces the control pressure. In another embodiment of the invention, a positioner receives a setpoint from a master and provides a control pressure to a valve actuator for controlling a valve. A sensing circuit in the positioner senses the valve position and pneumatics in the positioner provide the control pressure as a function of the sensed position and an output from a control circuit within the positioner. The positioner includes a diagnostic circuit which stores a valve attribute and provides a diagnostic output as a function of the stored valve characteristic and a selected one of the sensed variables. In another embodiment of the invention, a positioner includes a correction circuit for storing a valve attribute affected by one of a set of physical parameters and for receiving a selected one of the set of sensed physical parameters. The correction means compensates a command output from a control circuit as a function of the sensed physical parameter and the stored valve characteristic. In another embodiment, the positioner includes a benchset control circuit which ramps the control pressure between an initial control pressure and a final control pressure and back to the initial control pressure, while sampling specific control pressures and their corresponding positions, in order to provide an output indicating the proper spring preload force on an actuator spring.
Abstract:
A transmitter provides an output indicative of pressure of process fluid. The transmitter has a first body with a passageway filled with isolation fluid extending from a first port to a pressure sensor. A second body has an inlet for receiving process fluid and a second port. An isolation diaphragm between the first and second ports isolates process fluid from isolation fluid. A seal adjacent the diaphragm seals the diaphragm and couples the diaphragm to the second body. A spring urges the seal against the diaphragm.