Abstract:
Various implementations directed to seismic data processing using joint tomography are provided. In one implementation, a method may include receiving seismic data corresponding to a region of interest. The method may also include generating one or more first gathers and one or more second gathers based on the seismic data. The method may further include determining a relative shift in depth between at least a first event in the one or more first gathers and at least a second event in the one or more second gathers. The method may additionally include performing a joint tomography based at least in part on the first event, the second event, and the determined relative shift.
Abstract:
A method of acoustic positioning determination includes detecting a temperature gradient profile across a depth of water, determining a level of a thermal boundary between an upper temperature level and a lower temperature level, and determining a distance from the thermal boundary to position the acoustic positioning device and positioning the acoustic positioning device at that location.
Abstract:
A seismic streamer and associated method are provided. The seismic streamer may include a seismic streamer core having a cylindrical configuration. A melt-processable thermoplastic layer may be coupled with the seismic streamer core, the melt-processable thermoplastic layer being extruded to form a first tube. An elastomeric layer may be coupled with the melt-processable thermoplastic layer, the elastomeric layer being extruded to form a second tube.
Abstract:
Methods and computing systems for processing seismic data are disclosed. In one embodiment, a method for processing seismic data comprises receiving seismic data that includes active data corresponding to an active shot from a seismic source. The processing includes processing at least a portion of the active data using a passive data processing technique.
Abstract:
A method of extracting a salt body from a geological volume is provided. A starting object is located within the geological volume. The starting object defines an initial salt body boundary. Data points are distributed through the geological volume. The data points are associated with values of one or more geological attributes. The method includes the steps of: defining an expression which determines a change in position of the salt body boundary at the data points over an iteration based on the values of the one or more attributes; and applying the expression at the data points for successive iterations to evolve the salt body boundary over the successive iterations until a final form for the evolved salt body is achieved.
Abstract:
A seismic acquisition system. The seismic acquisition system may include at least one unmanned water vehicle. The seismic acquisition system may also include at least one seismic streamer coupled to the at least one unmanned water vehicle, where the at least one seismic streamer has one or more seismic sensors coupled thereto for recording seismic data in a survey area. The seismic acquisition system may further include a buoyancy compensation mechanism coupled to the at least one seismic streamer, where the buoyancy compensation mechanism is configured to orient the at least one seismic streamer between a generally vertical direction and a generally horizontal direction through a water column.
Abstract:
The present disclosure generally relates to the use of a self-propelled underwater vehicle for seismic data acquisition. The self-propelled underwater vehicle is adapted to gather seismic data from the seafloor and transmit such data to a control vessel. The self-propelled underwater vehicle may be redeployed to several seafloor locations during a seismic survey. Methods for real-time modeling of a target zone and redeployment of the self-propelled underwater vehicle based on the modeling are also described.
Abstract:
Various technologies described herein are directed to a method that includes deploying a plurality of wave gliders in a seismic survey area, where the plurality of wave gliders has one or more seismic sensors coupled thereto for acquiring seismic data. The method may also include deploying at least one source vessel in the seismic survey area, where the at least one source vessel has one or more sources coupled thereto and a central communication unit disposed thereon. The method may then include positioning the plurality of wave gliders according to an initial navigation plan. The method may further include monitoring a relative position of a respective wave glider in the plurality of wave gliders with respect to other wave gliders in the plurality of wave gliders and with respect to the at least one source vessel.
Abstract:
A method for selecting parameters of a seismic source array comprising a plurality of source elements each having a notional source spectrum is described, the method comprising calculating a ghost response function of the array; calculating directivity effects of the array; and adjusting the parameters of the array such that the directivity effects of the array are compensated by the ghost response to minimize angular variation of a far field response in a predetermined frequency range. A method for determining a phase center of a seismic source array is also related, the method comprising calculating a far field spectrum of the array at predetermined spherical angles, and minimizing the phase difference between the farfield spectra within a predetermined frequency range by adjusting a vertical reference position from which the spherical angles are defined.
Abstract:
A technique facilitates obtaining seismic data in a marine environment. An array of acoustic sources is deployed in a marine environment. The array can be utilized for creating acoustic pulses that facilitate the collection of data on subsea structures. The methodology enables optimization of acoustic source array performance to improve the collection of useful data during a seismic survey.