Abstract:
The present invention provides a broadcast message transmission method, a base station and user equipment. The method includes: determining a resource position of a broadcast channel, wherein the broadcast channel occupies M physical resource blocks (PRBs) among m PRBs of a frequency band center of a carrier, m and M are positive integers, M is not greater than m, and m is not greater than the number of the PRBs corresponding to the system bandwidth; mapping the broadcast channel on the resource position; and sending a broadcast message through the broadcast channel. In the embodiments of the present invention, since the broadcast channel occupies M PRBs among m PRBs of a frequency band center of a carrier, by mapping the broadcast channel on the resource position and sending a broadcast message through the broadcast channel, the resource utilization rate of the carrier may be improved.
Abstract:
The present invention provides a method for processing an enhanced physical downlink control channel (EPDCCH), a network-side device, and a user equipment. The method includes: notifying a user equipment (UE) of M physical resource block (PRB) sets used for EPDCCH transmission and N reference signal (RS) configurations used for EPDCCH downlink control information (DCI) rate matching and/or EPDCCH resource mapping, and notifying the UE of correspondence between the M PRB sets and the N RS configurations, where N is a positive integer greater than 1, and M is a positive integer; and performing the EPDCCH DCI rate matching and/or the EPDCCH resource mapping according to the correspondence between the M PRB sets and the N RS configurations.
Abstract:
The present invention provides a method and device for transmitting a reference signal sequence. The method includes: determining a position of an eCCE or an eREG mapped to an ePDCCH in a resource block pair; determining, according to corresponding relationship between the position of the eCCE or the eREG in the resource block pair and the antenna port of the reference signal; and transmitting a reference sequence over the antenna port of the reference signal, herein, the corresponding relationship between the position of the eCCE or the eREG in the resource block pair and the antenna port of the reference signal includes that the positions of at least two eCCEs or at least two eREGs correspond to one of the antenna ports of the reference signal.
Abstract:
The present invention discloses a downlink control channel transmission method, characterized by comprising: user equipment (UE) receives a first downlink control information (DCI) and a second DCI, wherein, the first DCI and the second DCI are used for jointly indicating scheduling information carried by a downlink control channel; the UE determines the first DCI as a primary DCI and the second DCI as a secondary DCI; and the UE acquires the scheduling information carried by the downlink control channel according to the primary DCI and the secondary DCI. Also disclosed in the present invention are a communication device and a system. According to the solution provided by the present invention, the transmission of the downlink control channel corresponding to an extended resource is indicated, and the backward compatibility of the control channel is ensured.
Abstract:
The present disclosure provides a method and device for transmitting information. The method includes: configuring a first physical uplink control channel format and a second physical uplink control channel for a user equipment first. An orthogonal sequence of the first physical uplink control channel format and an orthogonal sequence of the second physical uplink control channel format correspond to different expansion factors. Then the user equipment selects one of the physical uplink control channel format and the second physical uplink control channel format to transmit the feedback information.
Abstract:
A frequency hopping processing method and apparatus are disclosed, where user equipment receives frequency hopping information, which is sent by a network device, of an extended transmission time interval (TTI); and determines a frequency hopping area of the extended TTI according to the frequency hopping information of the extended TTI. The frequency hopping area of the extended TTI and a frequency hopping area of a normal TTI do not overlap in frequency, and during M-PUSCH frequency hopping of each extended TTI, the user equipment can hop into a corresponding M-PUSCH frequency hopping area according to a preset frequency hopping pattern, and does not hop into a PUSCH frequency hopping area, so that a resource conflict does not exist when M-PUSCH frequency hopping of an extended TTI and PUSCH frequency hopping of a 1 ms TTI are performed at the same time.
Abstract:
A method for encoding uplink control information comprises: determining the number of bits of the first uplink control information and the number of bits of second uplink control information; determining a second parameter for channel encoding of the first uplink control information according to the number of bits of the first uplink control information and the number of bits of the second uplink control information; determining the number of encoding symbols or the number of encoding bits of the first uplink control information according to the second parameter and the number of bits of the first uplink control information; encoding the first uplink control information according to the number of encoding symbols or the number of encoding bits of the first uplink control information.
Abstract:
Embodiments of the present invention provide a method for transmitting uplink data, user equipment, and a base station. The method includes: when user equipment UE correctly receives, in a subframe n, downlink control signaling used for instructing the UE to transmit a physical uplink shared channel PUSCH, determining, by the UE according to the downlink control signaling and a subframe bundling configuration, a bundled subframe for transmitting the PUSCH, where the subframe bundling configuration includes a quantity of bundled subframes; and transmitting the PUSCH in the bundled subframe. In the embodiments of the present invention, a bundled subframe is introduced, which increases scheduling resources for a PUSCH, and enhances coverage performance of a signal.
Abstract:
The present invention provides a method for transmitting downlink control information, a network side device, and a user equipment. The method includes: selecting, by a network side device, a aggregation level of a physical control channel set in a transmission subframe, and selecting the number of physical control channel candidates corresponding to the aggregation level according to the aggregation level; and sending, by the network side, downlink control information on a physical control channel candidate corresponding to the selected number. The times that blind detection is performed corresponding to the aggregation level corresponds to the number of physical control channel candidates, and therefore, when the number of physical control channel candidates is determined, the times that blind detection is performed is determined, so that the network side device and the user equipment can communicate with each other without increasing the times that blind detection is performed.
Abstract:
Embodiments of this application provide a communication method, a communications apparatus, and a communications system, to determine a physical resource block (PRB) grid when a center frequency of a synchronization signal (SS) is inconsistent with a center frequency of a carrier. The method includes: receiving, by a terminal, an SS from a network device; determining, by the terminal, a first PRB grid based on the SS; receiving, by the terminal, first indication information from the network device, where the first indication information is used to indicate a first frequency offset between the first PRB grid and a second PRB grid; and determining, by the terminal, the second PRB grid based on the first PRB grid and the first frequency offset.